

#### Sub-Micrometre Resolution Transverse Electron Beam Size Diagnostics Using Spatial Properties of OTR Point Spread Function

 R. Ainsworth, T. Aumeyr, S. T. Boogert, P. Karataev, K. Kruchinin, L. Nevay John Adams Insitute at Royal Holloway
 A. Aryshev, M. Shevelev, N. Terunuma, J. Urakawa KEK
 B. Bolzon, T. Lefevre, S. Mazzoni CERN

Thursday, 13 February 2014

#### OUTLINE

- Introduction
- Experimental setup
- Calibration
- Quad Scan
- Window size
- Summary



# OTR



Transition radiation (TR) appears when a charged particle crosses a boundary between two media with different dielectric constants.

The resolution is determined by the source dimensions induced by a single particle plus distortion caused by the optical system (diffraction of OTR tails)



# ATF2 EXTRACTION LINE







# EXPERIMENTAL SETUP





CCD Camera - SBIG-ST8300M with 5.4 µm pixel size, 3352×2532 pixel array and ~50% quantum efficiency

#### OTR IMAGE



# HORIZONTAL PROJECTION



# VERTICAL PROJECTION



•  $a_0$  is the vertical offset of the distribution with respect to zero

- a1 is the amplitude of the distribution
- a<sub>2</sub> is the smoothing parameter

a<sub>3</sub> is the horizontal offset of the distribution with respect to zero
a<sub>4</sub> is the distribution width

# **PSF-LIKE FIT FUNCTION**

Contrast ratio

$$\frac{I_{\min}}{I_{\max}} = \frac{2a_2^2 a_4}{a_2^2 a_4 + \sqrt{1 + a_2^4 a_4^2}}$$

Distance between peaks

$$2\sqrt{-a_2^2a_4 + \sqrt{1 + a_2^4a_4^2}}$$

 $a_2$ 



# **SELF-CALIBRATION**



John Adams Institute for Accelerator Science

In the whole data set find a file with smallest Imin/Imax

Regenerate fit curve f(x) with errors for the calibration file substituting zeros a<sub>0</sub> and a<sub>4</sub>

Convolute fit with Gaussian distribution as follows

$$F(x_j) = \frac{\sum_{i=1}^{N} f(x_i) \exp\left(\frac{-(x_j - x_i)^2}{2\sigma^2}\right)}{\sum_{i=1}^{N} \exp\left(\frac{-(x_j - x_i)^2}{2\sigma^2}\right)}$$

Propagate errors through convolution.

Repeat convolution N times varying  $\sigma$  from 0 to  $\sigma$ m with a fine step.

For each iteration. find Imin/Imax and calculate its errors resulting in calibration curve

#### **SELF-CALIBRATION**



Thursday, 13 February 2014

#### QUAD SCAN



#### GAP SIZE





The choice of gap size affects the contrast ratio and beam size

- too small leads to large error
- too big systematically adds more noise

# CURSOR SIZE



#### EMITTANCE



# SUMMARY

- No new data taken since spring 2013
- Focus on data analysis
  - Analysis code converted to python for future project
  - Choice of window size
  - emittance calculation
- Plan to publish paper to Journal of Instrumentation

