Status and Plan of Compton γ-ray Generation at KEK-ATF

Tsunehiko OMORI (KEK)

for

Japanese Labs.: KEK, ATF group,

Hiroshima University

13 February 2014
ATF Project Meeting at KEK

Laser-Compton Scheme and Laser Pulse Stacking

Introduction

Polarized e+ by laser Compton Scheme

Toward the positron sources
-> increase intensity of gamma rays

Staking Laser Pulses in Optical Cavity

Miyoshi PosiPol2010

Increase power of laser beam at interaction point for increasing gamma yield.

enhancement with optical cavity

Laser beam accumulated by optical cavity

Experiments at the KEK ATF

KEK-Hiroshima 4-mirror Cavity

2011 Autumn: New KEK-Hiroshima Cavity was Installed

New KEK-Hiroshima Cavity (4-Mirror Cavity)

3D configuration (twisted) for round profile

Stable resonance with small spot size

- Stable resonance by new feedback sys. (analog)
- 2.6kW average power w/ 1.4% fluctuation
- laser waist size at IP(σ)=13um (vertical scan)
- Finesse 4040+-110 (Enhance = 1200)

γ-ray Generation / electron

5bunches/train

5.6ns

2970±20 MeV ⇒ ~128γs/train

ATF 2.16MHz ~2.6 × 10⁸/sec

Laser vertical spot size 13µm achieved

Laser profile at IP

Issues

Issues

Issue (1)

Possibly a thermal effect
 Stored power decrease as time goes
 due to (unexpected) power loss on mirrors

Profile at the IP

Not round must revisit optical property in the cavity

Issue (1) Cure:

Cleaning the mirrors w/ First Contact

Before

R = 0.999846 + -0.000003 (Loss: 50ppm)

After

R = 0.999864 + - 0.000003

(Loss: 30ppm)

Issue (1) Cure: We must be

Issue (2) Study: Quasi-direct Profile measurement at / near IP

Issue (2) Study:

Quasi-direct Profile measurement at / near IP

短軸(σ) [um]長軸(σ) [um]

Summary

Summary

- ► Current 3D4M cavity works well.
 - we have basic technologies in our hand.
- ▶but,
 - optical properties yet to be understood (profile is NOT round).
 - mirrors should be studied for high power storage.
- ► How to deal with Issues? It is clear.
 - step back once to basic study(PHYSICS) to go forward.

Backups

next?

- ► Gloal: More than 100 times more power in the cavity
 - -power enhancement
 - -injection laser power
- ► Mirrors with
 - higher reflectivity
 - low loss (LMA, REO, ATFilms)
- ▶ Understand EM wave behavior in the cavities

Two 4-mirror cavities are at the ATF

KEK-Hiroshima installed autumn 2011 relatively simple control system employs new feed back scheme

LAL-Orsay installed summer 2010 sophisticated control digital PDH feedback

Finesse measurement

Airy Function

FWHM Free Spectral Range (FSR)

Finesse: 4040 ± 420

Decay time measurement

 4040 ± 110

Both Consistent but smaller than expected, 4830, from mirror reflectivity

3-Dimensional 4 Mirror Cavity

- ► Resonates only for circular polarization
 - geometric phase due to twisted pass
 - cavity only resonates with circular polarization
 - -usable for pol. switching

Configuration of Test Bench

L1=M1-M2=420mm L2=M2-M3=420mm

L3=M3-M4=420mm

L4=M4-M1=420mm

M2-M4=100mm M1-M3=100mm

Calculation of Spot Size w/ Test Bench Geometry

New Geometry

L1=M1-M2=420mm L2=M2-M3=420mm L3=M3-M4=420mm L4=M4-M1=420mm

M2-M4=70mm M1-M3=70mm

Expected Spot Size w/ New Geometry

laser spot size of 15 µm is expected with new geometry

5bunches/train

laser

•# of ©s =123.8/train

•confirmed stable photons from each bunch

Status as the last meeting

- What achieved
 - 2.6 kW stored w/ 1.4 % stability
 - 128 photons/train
 - laser waist size 13 | m in vertical direction
- What to be confirmed
 - finesse
 - power balance
 - laser profile at IP

Power Balance

Stacked power

Injected Power x Enhancement =1.6kW Tansmitted Power / Transmission =1.6kW

⇒Two Estimations are Consistent

Decrease in stack power

Thermal deformation of the mirror

-> Change of transmitted pofile

=Incident efficiency is reduced.

Ongoing: Installation Digital Feedback

Feedback circuit : analog -> digital

Expected Advantages

- large fexibility
- Auto control

Cavity Length Feedback with 3D Feature

cavity length must be $L = n\lambda/2$ with very high precision (for enhancement of 1900 dL<< 87pm while L = 1.64m)

Stored Laser Power in the Cavity

Bunch-by-Bunch Measurement

- ◆ ~ 117/train ⇒ consistent w/ calorimeter measurement
- no bunch dependence (yield is proportional to e- current)