Intensity dependence- Wakefield

20140214 K.Kubo

- Very brief summary of studies so far
- Proposed Plan & Ideas
- On IPBPM as beam tilt monitor

Intensity Dependence

betax*=20mm, betay*=0.10mm betax*=80mm, betay*=0.05mm 0.8 betax*=40mm, betay*=0.10mm 0.8 betax*=80mm, betay*=0.10mm X betax*=80mm, betay*=0.10mm × betax*=80mm, betay*=0.30mm X Modulation Depth 50 F.0 90 Modulation Depth 80 80 90 90 × × × ×× × × 0 0 2 8 10 0 2 0 6 6 8 10 4 4 Intensity [x10^9] Intensity [x10⁹] betax* **Beam Size Growth** Fitted: betav* 20mm 0.10mm 21.6nm/1e9 $\sigma_y^2 = \sigma_{y,0}^2 + w^2 q^2$ 40mm 0.10mm 23.5nm/1e9 $w \approx 20 \text{ nm}/1\text{E9}$ 0.10mm 21.0nm/1e9 80mm 18.3nm/1e9 80mm 0.05mm (K.K.) 20.0nm/1e9 80mm 0.30mm

Intensity Dependence measured with IP-BSM 30 degree mode.

This calc. Included cavity BPMs only. May underestimate wakefield. But factor 6 difference seems too much.

Examples of wake calculations

Calc. by A. Lyapin

More calculations

Comparison with simulation

IP beam size vs mover position experiment and calc.

ATF2 weekly meeting 20130708 K.Kubo

Effect of wake source at the mover, offset 1 mm, bunch charge 1 nC. IP beam size increase (nm/mm/nC)

	C-band ref.	No mask Bellows	Masked Bellows
Experiment	55	47~50	7
Calc	32.2	22.6	?

Factor 1.7 – 2.2 larger than calculation consistent wit orbit change measurement

Reduction of wakefield

- Shield bellows
- Remove unused cavities (ref. cav. BPM)
- Move from high beta to low beta position
- Alignment

• No clear improvement observed so far.

Plans and ideas for further study of intensity dependence (wakefield)

- Wake-free steering
 - Proposal in TB meeting
 - Need to well tuned BPMs?
 - Resolution, intensity dependence,,,,,.
- IPBPM as a beam tilt monitor?
 - See next slides
- Deflection RF cavity (Dipole mode)
 - Need to check
 - Effective? (What can be studied? How much improvement?)
 - Hardware available?
- Reduction of wake
 - Shield discontinuities in beam pipe

IPBPM as beam tilt monitor ?

Point charge

Two point charges

$$V(t) \propto q \int_{-L/2c}^{L/2c} (y - \Delta y/2 + \theta ct') \cos(\omega(t - t' + z/2c)) dt' + q \int_{-L/2c}^{L/2c} (y + \Delta y/2 + \theta ct') \cos(\omega(t - t' - z/2c)) dt'$$

y: Offset of bunch center θ : Angle of bunch center Δy : Head - tail orbit difference $\omega: 2\pi \times \text{resonance freq.} (\sim 6.4 \text{ GHz})$ $z: \text{Distance between head and tail} \approx 2\sigma_z \approx 16 \text{ mm}$ $V = q [ay \cos(\omega z/2c) \cos(\omega t) + b\theta \cos(\omega z/2c) \sin(\omega t) + a\Delta y \sin(\omega z/2c) \sin(\omega t)]$ $\approx q [0.48 \times y \cos(\omega t) - 0.016 \times \delta y \sin(\omega t) + 0.88 \times \Delta y \sin(\omega t)]$

One Cavity

Cannot tell orbit angle or head-tail

Same signal:

 $\Delta y \sim 40$ nm (~1-sigma for nominal beta*, 0.03 sigma for x1000 optics),

 $\theta \sim 0.37 \text{ mrad}$ (~1-sigma for nominal beta*, 30 sigma for x1000 optics),

- Need to know absolute angle better than this. ???
- Effect of beam jitter?

More than one cavity

E.g. 2 cavities, possible procedure for checking sensitivity

- Take data with different conditions of wakefield (bunch charge or wake source on mover)
- Check consistency between
 - Orbit angle change evaluated from I signal of both cavities and
 - Angle change evaluated from Q signal of each cavity
- Inconsistency can be explained by wakefield?
- Effect of beam jitter?

Much more to be considered

- Effect of cavity angle so simple?
- What if beam is not so stable?
- Effect of head-tail in BPM calibration?
- Sensitivity depends on optics (betay*)?

• , , , ,

• , , , , , , ,

Discussion

- ?