Rough Estimation of energy spread produced in Final Focus line and effects to chromatic correction in ILC and ATF

201301018 minor change 201402 Kiyoshi KUBO

Energy change after bend in FF affect chromatic correction

- Energy changes after bending magnet (for dispersion creation) in FF affect chromaticity correction [1]
- Energy dependent horizontal displacements at sextupole magnets deviate from design (smeared)
- For perfect chromaticity correction, energy of each particle should not change in designed dispersive (non-zero horizontal dispersion) region
- Beam size is expressed as

$$\sigma_{y} \approx \sigma_{y,0} \sqrt{1 + \xi^{*2} \delta^{2}}$$
 $\sigma_{y,0}$: beam size with perfect chromatic correction $\xi^{*} = L^{*}/\beta^{*} \approx 10000$ (both in ILC and ATF2) δ : rms of induced energy spread

Relative energy change should be much less than 1E-4

Possible sources of energy change in FF

- Space charge
- Resistive wall wake
- Structure (discontinuities) wake
 - Crab cavity
 - Cavity BPM
- Synchrotron radiation
 - Incoherent (SR)
 - Coherent (CSR)

Each effect is (very roughly) estimated as follows.

Roughly estimated energy spread induced by each effect, Relative to beam energy, which should be compared with $1/\xi^* \sim 1E-4$

	ILC BDS	ATF2
Space charge	7E-11	2E-9
Resistive wall wake	1.1E-5	2.4E-7
Incoherent SR*	1.5E-5	< 4.2E-7
Coherent SR	< 1.3.E-6	< 1.8E-6
Crab cavities wake	1E-6	
Cavity BPM wake	1.4E-5**	5E-6

^{*} This effect is included in ILC FF design

See next 8 pages for estimation of each effect

^{**} If similar design of ATF, scaled ½, used

Space charge

Longitudinal electronic field is roughly [2],

$$E_s \approx \frac{2}{\gamma^2} \lambda'(z) \ln \frac{b}{a}$$

 $\lambda(z)$: charge line density of bunch,

 γ : energy factor,

b: radius of beam pipe,

a: radius of beam

max.
$$\lambda'(z) \approx \frac{qe^{-1/2}}{\sqrt{2\pi}\sigma_z^2}$$

max. $\lambda'(z) \approx \frac{qe^{-1/2}}{\sqrt{2\pi}\sigma_z^2}$ for Gaussian bunch with charge q and length σ_z

	ILC BDS (E _b 100GeV)	ATF2
q (C) / σ_z (m) / γ	3.2E-9 / 3E-4 / 2E5	1E-9 / 7E-3 / 2.6E3
<i>b</i> (m) / <i>a</i> (m)	5E-3 / 1E-6	12E-3 / 1E-6
$\max. E_s (V/m)$	5.5E-3	0.13
Relevant beamline length (m)	500	21
$\delta = eE_sL/(mc^2\gamma)$	7E-11 (for 100 GeV)	2E-9

Negligible

Resistive wall wake [2, 3, 4]

Standard deviation of energy loss of Gaussian bunch beam due to resistive wall wake is approximately

$$\delta E \approx 1.1 \times eq\kappa$$

where, κ is the loss factor which is approximately

$$\kappa = \frac{\Gamma(3/4)cZ_0^{1/2}L}{4\sqrt{2}\pi^2b\sigma_z^{3/2}\sigma^{1/2}}$$

q: bunch charge

b:radius of beam pipe,

 σ_z : rms bunch length

 σ : conductivity of pipe wall

L:Length of beam pipe

 Z_0 : vacuum impedance, = $120\pi \Omega$

 $\Gamma(3/4) \approx 1.225$

	ILC BDS (E _b 100GeV)	ATF2
q (C) / σ_z (m) / γ	3.2E-9 / 3E-4 / 2E5	1E-9 / 7E-3 / 2.6E3
<i>b</i> (m)	5E-3	12E-3
$\sigma(\Omega^{\text{-1}}\text{m}^{\text{-1}})$	5.9E7 (Copper)	1.4E6 (Stainless)
κ/L (V/m/nC)	640	15
Relevant beamline length, L	500	21
$\delta E/E$	1.1E-5 (for 100 GeV)	2.7E-7

Incoherent SR

Energy spread increase in bending field is roughly,

$$\Delta E^2 \approx \frac{55e^2\hbar c}{24\sqrt{3}} \frac{\gamma^7 L}{\rho^3}$$

 γ : energy factor

L:length of bending magnet

 ρ : curvature radius

There are three different types of bending magnets.

	ILC BDS (E _b 250GeV)	ATF2
γ	4.9E5	2.6E3
ρ of bends (m)	2.0E4/2.4E4/6.7E4	min. 11.6
L of bends (m)	24/26.4/14.4	Total 1.8
$\operatorname{Sqrt}(\Delta E^2)$ (eV)	3.8E6	< 5.4E2
$\delta \sim \operatorname{sqrt}(\Delta E^2)/(mc^2\gamma)$	1.5E-5	< 4.2E-7

(This effect is already included in ILC FF design.)

Coherent SR

The effect is expressed as a wakepotential, which is roughly [3],

$$W \approx \frac{Z_0 c}{4\pi\sigma_z^{4/3}\rho^{2/3}}$$
 Z_0 : vacuum impedance σ_z : bunch length

 ρ : curvature radius

Energy change is wakepotential times bunch charge times length, $\Delta E \approx qLW$

	ILC BDS (E _b 100GeV)	ATF2
q (C) / σ_z (m) / γ	3.2E-9 / 3E-4 / 4.9E5	1E-9 / 7E-3 / 2.6E3
min. ρ (m)	2E4	19
W (V/C/m)	6.1E11	1.3E12
Total bend length, L (m)	65	1.8
ΔE (eV)	< 1.3E5	< 2.3E3
$\delta \sim \Delta E/(mc^2\gamma)$	< 1.3.E-6	< 1.8E-6

Wakefield of structures, discontinuities

- Crab cavities (only in ILC BDS, not in ATF2)
- Cavity BPM
- Other discontinuities

Crab cavity in ILC BDS

- Loss factor of a crab cavity was estimated as 23.5 V/pC in the reference [5].
- There will be two cavities per beam, and for 3.2 nC bunch, energy change will be about 150 keV.
- Which is order of a 1E-6 of the beam energy.
- Not significant.

Cavity BPM – ATF2

ATF2

- Longitudinal wakepotential of a reference cavity of BPM system (aperture 16 mm) in ATF2 was calculated as about 0.7 V/pC
 - for 7 mm length bunch [6].
 - Scaling for dipole cavity (aperture 20 mm), 0.7x(16/20)² ~ 0.45
 V/pC
- Energy change in one BPM is about 0.45 keV for 1nC bunch.
- Total about 14 BPMs in the relevant beam line
 - energy change is about 6.3 keV, about 4.8E-6 of the beam energy.
- Not significant compare with 1E-4 (1/chromaticity)

Cavity BPM - ILC

ILC BDS (Rough Scaling from the ATF2 case)

 Assume similar BPM design, scaled by the aperture (~1/2), and similar number of BPMs, wakepotential scale as aperture^(-2),

→ factor 2²

 Bunch length 0.3 mm, bunch charge 3.2 nC, assume proportional to line density,

 \rightarrow factor (7/0.3)x(3.2/1)

- Beam energy ~100 times higher → factor 1/100
- Total factor is about 3 and relative energy change will be 1.4E-5
- It may have a small visible effect.
 - May use BPM with larger aperture.
 - Or may use stripline BPM for large beta locations.

Wakefield of other discontinuities

- Strength of additional Wake is expected to be comparable to or smaller than that of cavity BPM.
- In ATF2, it will not be significant.
- In ILC BDS careful design is required.

SUMMARY

- Energy change after the first bend in FF line can affect beam size at IP.
 Relative energy change should be much smaller than 1/chromaticity ~ 1E-4.
- Rough estimation of space charge, resistive wall wake, structure (crab cavity, cavity BPM) wake, incoherent radiation and coherent radiation are made.
- For ILC BDS FF,
 - Resistive wall wakefield (5 mm radius, 500 m long copper pipe) and Incoherent synchrotron radiation have some effects.

Resistive wall: $\xi * \delta \sim 0.11$, beam size increase $\sim 0.6\%$

Incoherent SR: $\xi * \delta \sim 0.15$, beam size increase $\sim 1\%$

- Wakefield of cavity BPMs and other discontinuities may have some effects (~1% beam size increase, if simply scaled from ATF2 cavity BPM). Careful design required for BPMs and beam pipe.
- Other effects will be small.
- For ATF2 FF
 - All effects are small.

References

- [1] K. Oide, private communication.
- [2] A. Chao, "Physics of collective beam instabilities in high energy accelerators"
- [3] "Handbook of Accelerator Physics and Engineering", ed. A. Chao, et.al...
- [4] K. Yokoya, private communication.
- [5] C. Adolphsen et al., "Design of the ILC crab cavity system," EUROTEV-REPORT-2007-010 (2007), DOI: 10.2172/915387.
- [6] A. Lyapin, http://atf.kek.jp/twiki/pub/ATF/Atf2Wakes/atfCrefWakeLBL7.pdf