AHCAL 2014 test beam and new tiles

- > AHCAL goals
- new Uni HH tiles
- DESY testbeam 2013/2014
 - calibration data
 - EM showers
- further testbeam plans
- > conclusions & outlook

Katja Krüger CALICE Collaboration meeting Argonne, 19 March 2014

On the way to a full engineering prototype

goals:

- > 2013/2014: production, calibration and test of new hardware
- beginning of 2014: measurements of EM showers in the small ILD-like stack

> 2014/2015:

first measurements of hadrons with a "shower start finder" and a few 2*2 HBU layers

- ILD stack
- tungsten stack
- Ionger term: fully equipped 1m³

plans from CALICE meeting in September 2013

On the way to a full engineering prototype

goals:

- > 2013/2014: production, calibration and test of new hardware
- beginning of 2014: measurements of EM showers in the small ILD-like stack
- > 2014/2015:

first measurements of hadrons with a "shower start finder" and a few 2*2 HBU layers

- ILD stack
- tungsten stack
- Ionger term: fully equipped 1m³

plans from CALICE meeting in September 2013

New Tiles produced by Uni HH

	Gain [e-]	DCR	Cross talk	dV _{BD} /dT	N of pixels
KETEK PM1125	0.7 x 10 ⁶	0.2 Mcps	~ 5%	~15 mV/K	2300
CPTA	(0.7-2) x 10 ⁶	1 Mcps	~ 1%	20 mV/K	798

<u>Tile (except first 288 tiles):</u>

- Bicron BC-400 Polyvinyltoluene, peak emission: λ = 423 nm
- machined instead of moulded: improve accuracy on dimensions (~ 10 μm)
- no WLS fiber:
 - Machined coupling to match SiPM
 - SiPM Kapton support glued to plastic tile
 - "cathedral" drill in front of the SiPM to improve uniformity (adaptation of MPI Munich design)

Wrapping:

- tiles are individually wrapped with 3M Vikuiti reflector foil
- foil cut with laser cutter
 - hole for SiPM monitoring via LED on the HBU
 - cut for two different hole positions (75% of HBU LED positions matched)
- mechanically wrapped around the tile;
- fixed with sticker with QR code for unique identification

Tile characterization

four HBUs equipped (i.e. 576 tiles)

- 357 tiles characterized at UHH (215 of them with BC-400)
 - SiPM performances
 - Breakdown voltage
 - Gain
 - Dark Count Rate
 - Response to MIP with ⁹⁰Sr
- 285 characterized at Heidelberg KIP (many overlaps)

performance at fixed excess bias (+2.5 V): very good tile-to-tile uniformity, low noise

Impact of tile non-uniformities on physics

Evaluate the impact of tile non-uniformity on single shower reconstruction: ⁹⁰Sr tile scans used to weight the Monte Carlo energy depositions

10 GeV π-				100 GeV π-		50 GeV e-			
	E _{reco} [MIP]	σ/E [%]	Hits	E _{reco} [MIP]	σ/E [%]	Hits	E _{reco} [MIP]	σ/E [%]	Hits
Ideal	361 ± 2	17.4± 0.4	99 ± 1	3873 ± 6	7.9± 0.1	632 ± 2	2299	2.83± 0.08	184
Direct/Ideal	0.996	1.02±0.04	0.99±0.01	0.998	1.00±0.02	0.997±0.003	0.9967	1.12	1.000±0.001
Fiber/Ideal	0.998	0.99±0.04	1.00±0.01	0.995	1.00±0.02	0.995±0.003	0.9983	1.31	1.000±0.001
Dimple/Ideal	0.998	1.00±0.04	1.00±0.01	0.997	1.00±0.02	1.005±0.003	0.9974	1.39	1.000±0.001

Impact of tile non-uniformities: Energy dependence

energy resolution negligible for hadrons

Katja Krüger | AHCAL 2014 test beam and new tiles | 19 March 2014 | Page 7/26

On the way to a full engineering prototype

goals:

- > 2013/2014: production, calibration and test of new hardware
- beginning of 2014: measurements of EM showers in the small ILD-like stack

> 2014/2015:

first measurements of hadrons with a "shower start finder" and a few 2*2 HBU layers

- ILD stack
- tungsten stack
- Ionger term: fully equipped 1m³

plans from CALICE meeting in September 2013

DESY electron testbeam 2013/2014

- three weeks of beam time Dec.13-Jan.14
 - personpower from DESY, UniHH, UniHD, UniW
 - probably last DESY beam for this year

MIP calibration

- calibration through eight layers
- four new UHH layers, first time in beam

EM showers

- all eight layers in ILD absorber stack
- data for EM energy resolution analysis

> Electronics

- next iteration on DAQ hard-/software
- temperature readout
- heat dissipation studies

DAQ setup and development

- progressing towards scalable scintillator DAQ
- status: CCC and LDA (working as fanout) included, fast signals via HDMI, operated successfully in testbeam with up to 8 layers
- full LDA integration and switch to data transfer via HDMI on-going
- intensive discussion with T. Suehara to ensure compatibility of Silicon and Scintillator DAQ
- > more details in talk by J. Caudron

eight HBU layers

- four layers UniHH tiles
- three layers "new batch" ITEP tiles
- one layer "old batch" ITEP tiles
- ~1200 channels total

commissioning

- full commissioning for UniHH boards
- old boards partly recommissioned (IDAC calibration, exchanged chips)
- all hold times revisited and checked

MIP Scan

- > mount all layers in airstack
 - no absorbers between layers
 - airstack mounted on stage, target 3 GeV beam at each tile position
- > electrons are not real MIPs
 - EM showers induced by upstream material
 → move telescope/DUTs out of beam
 - HBUs and cassettes are significant material e.g.: 1mm steel/layer → 0,5 X₀ total
 - increasing beam energy reduces showers, but also reduces rate

MIP Scan

- very low thresholds (<0.2 MIP) for most channels
 - no threshold retuning during scan
 - trade threshold position for r/o efficiency
 - ~4 beam hits per r/o cycle
- > ~5 min/position \rightarrow ~20 h in total
 - 5000 r/o cycles, ~20000 events/channel

DES

> calibration of eight HBUs at the same time succeeded!

MIP analysis with TDC cuts

- MIP data taken on purpose with very low thresholds
 → need cleaning of data
- Idea: use TDC measurement and clustering in time of MIP hits in several layers in time to select hits from MIPs
- Example shown: testbeam data with 4 layers, works better with more layers
 - very simplistic TDC 'calibration' to correct for different TDC ranges on different ASICs
 - variation of width of sliding time window: 400ns, 200ns, 100ns, 50ns, 20ns, 10ns, 5ns
 - \rightarrow nearly noise-free MIPs with 50 ns
- Optimisation ongoing (UniW bachelor)

First look into MIP correlation lab ↔ testbeam

- MIP calibration data for UniHH tiles taken for individual tiles with ⁹⁰Sr source in lab (with dependence on overvoltage) and in DESY testbeam
- > analysis ongoing, very preliminary comparison

- difference is centred around zero
- spread of ~ 1.6 pixel/MIP
- one source of large spread identified: HV applied in testbeam up to 200 mV different from the expected value (reason needs to be clarified)
- \rightarrow re-measure applied HV, correct lab value

First look into MIP correlation lab ↔ testbeam

- MIP calibration data for UniHH tiles taken for individual tiles with ⁹⁰Sr source in lab (with dependence on overvoltage) and in DESY testbeam
- > analysis ongoing, very preliminary comparison

- > difference is centred around zero
- > spread of ~ 1.6 pixel/MIP
- one source of large spread identified: HV applied in testbeam up to 200 mV different from the expected value (reason needs to be clarified)
- \rightarrow re-measure applied HV, correct lab value
- \rightarrow reduces spread to ~0.7 pixel/MIP

EM Showers in ILD Absorber

- after MIP calibrations: move layers to ILD stack
 - steel absorber in true ILD HCAL geometry
 - no chips broken during transfer
- > measure EM energy resolution
 - fixed trigger setup <0.5 MIP for comparability
- energy scan 1 5 GeV in 0.5 GeV steps
 - rates at >5 GeV too low to keep trigger threshold setup fixed

First Look into EM Showers

- first shower characteristics in online monitor tool
 - based on simplified event building, not to be taken as final values
- mean hits per event scales with beam energy
 - very dependent on noise contributions
- mean ADC sum scales with beam energy
 uncalibrated, but good sign
- Shower dynamic range
 - auto-gain feature of ASIC is used
 - EM showers exceed dynamic range of high gain, chip switches to low gain when necessary
 - intercalibration data with simultaneous readout of high gain and low gain taken

EM shower deposition (Layer 4)

Stack Temperature

- stack temperature development measured over time
 - external sensor attached to inside of absorber stack next to HBU
 - will be used to calibrate temperature sensors on the HBUs
 - can identify most features in measured temperature
- also took IR (heat) photographs of stack during/after operation
 need to know hotspots for design of cooling system

Heat Distribution and Sources

Katja Krüger | AHCAL 2014 test beam and new tiles | 19 March 2014 | Page 21/26

On the way to a full engineering prototype

goals:

- > 2013/2014: production, calibration and test of new hardware
- beginning of 2014: measurements of EM showers in the small ILD-like stack

> 2014/2015:

first measurements of hadrons with a "shower start finder" and a few 2*2 HBU layers

- ILD stack
- tungsten stack
- Ionger term: fully equipped 1m³

plans from CALICE meeting in September 2013

Preparations for hadron testbeam at CERN

- > applied for 2 times 2 weeks beam time at PS towards the end of 2014 goals:
 - shower profiles with timing in tungsten and steel
 - test of different photosensors with EM showers
 - muon calibration data
- first very preliminary PS and SPS schedule available
 AHCAL listed with 14 days in October/November 2014 and 12 days in November/December (3 weeks between the 2 periods)
- > Preparations started:
 - DAQ
 - Hardware
 - mechanics, cassettes, tooling: see talk by K. Gadow
 - electronics: see talk by M. Reinecke
 - Power supplies and distribution
 - HBUS + tiles + SiPMs

Preparations for hadron testbeam at CERN

Power supplies and distribution

- > Ordered commercial WIENER crate with LV and HV plug-in modules
- Crate and LV modules delivered
- > HV modules need modification to limit current, more difficult than expected by supplier, solution exists now for one channel
- ➤ Cables and cable distribution box (cable bundle per layer ↔ cable per voltage) exist

HBUs + tiles + SiPMs

- Existing: 4 HBUs with 'old' ITEP tiles with WLS fibre + 4 HBUs with UniHH tiles with Ketek SiPMs
- Ketek SiPMs for 4 more HBUs delivered, tiles being produced by UniHH
- ITEP produced direct-readout tiles (+ Ketek SiPMs with 12100 pixels) for 2 HBUs, arrived at DESY, very first tests in lab done
- Unis HH and HD ordered SenSL SiPMs for 8 HBUs, tile production and testing to be clarified between HH and HD
- Plan to use 1-2 EBUs for first layers in shower start finder
- > 1 SM-HBU from NIU with top-view SiPMs?

Close progress monitoring and testing & commissioning crucial

New direct-coupling tiles with Ketek SiPMs produced by UniHH

- characterized by UniHH and UniHD
- very low noise and very small tile-to-tile spread
- Influence of tile non-uniformity for all designs (WLS fibre, fibre-less, top-view dimple) negligible for hadrons
- Successful DESY testbeam in 2013/2014
 - 4 HBUs with old tiles, 4 HBUs with new UniHH tiles
 - MIP calibration through 8 layers, good correlation lab ↔ testbeam
 - EM showers: energy scan 1 5 GeV in 0.5 GeV steps
- Preparation for 4 weeks of CERN PS hadron testbeam at end of 2014
 - more hardware, especially tiles+SiPMs, in production
 - preparing infrastructure & DAQ
 - close progress monitoring necessary

Backup

Timing Selection: Calibration

- TDC range differs from channel to channel
 - Hit timing selection needs TDC calibration
- Simple calibration employed here:
 - Edge detection on TDC spectra
 - Min-max mapping
 - Works directly from data
- Full TDC calibration
 - In progress for hadron shower timing data
 - Not easily transferable

