Higgs BR study at 250 and 350 GeV

ILD meeting at Ohshu, Iwate Physics session 2014. Sep. 09 H. Ono (NDU), Felix Müeller (DESY)

Higgs Branching ratios study

Zh BRs measurement is an important task on ILC 250 GeV: Zh (Higgs-strahlung) dominant (σ_{7h}xBR) 350 GeV: Zh + WW-fusion (σ_{7h} + $\sigma_{10/10/2}$ xBR)

IIL

Higgs BR study in ILC

- Determine <u>absolute Higgs BR</u> (σ_{zh} model independent measurement)
- Complementary study with LHC in <u>Higgs hadronic decay channel</u>

11L

BR	Mh	bb	СС	gg	ττ	ww	ZZ	γγ	Ζγ	μμ
Pythia	120 GeV	65.7%	3.6%	5.5%	8.0%	15.0%	1.7%	0.3%	0.1%	0.03%
LHCXSWG	125 GeV	57.8%	2.7%	8.6%	6.4%	21.6%	2.7%	0.2%	0.2%	0.02%
Sep. 09 2014			ILD meet	ting @Or	ishu, Iwat	e				

Signal (M_h=125 GeV) and BGs

E _{cm}	250 GeV	350 GeV
Signal	σ (-0.8,+0.3)	σ (-0.8, +0.3)
vvh	77.5	98.7
qqh	210.2	138.9
eeh	10.9	10.2
μμh	10.4	6.9
ττh	10.4	6.9
Total	319.4	261.5

 e^+

SM BGs	250 GeV	350 GeV
Signal	σ (-0.8,+0.3)	σ (-0.8, +0.3)
2f	1.2x10 ⁵	7.2x10 ⁴
4f	4.1x10 ⁵	3.1x10 ⁴
6f	Not considered	1.4x10 ²
1f_3f	1.3x10 ⁶	1.6x10 ⁶
aa_2f/4f	5.8x10 ⁵	9.6x10⁵
tt	None	827.3

Zh: Hiroaki Ono 250, 350 GeV

vvh (WW-fusion): Felix Müller (DESY) 350 GeV

250 and 350 GeV analysis

vvh analysis procedure (H.Ono)

Apply **forced two-jet clustering** after the LCFIPlus vertex tag

Reconstruction Strategy vvh @350 GeV Felix Müller

> $vvh \rightarrow 2$ Jets + Missing Mass

FastJetProcessor to remove γγ-overlay

kt algorithm, R value 1.5, 4 exclusive jets

- > Uncluster the 4 jets and use Durham to cluster the particles in 2 jets
- > Use LCFIPlus for flavor tagging
- Evaluate flavor likeness X_i of the event (i=b,c,bc)

$$X_i = \frac{x_{i1}x_{i2}}{x_{i1}x_{i2} + (1 - x_{i1})(1 - x_{i2})}$$

with x_i the flavor tag of the single jets

Event selection with cut analysis and BDT

Template fit to the flavor likeness of the Higgs di-jets

Missing mass distribution kt jet clustering is optimized

 Cuts optimized for significance and for equal sensitivity to Higgs strahlung and WW fusion (~39% signal left for both processes)

> BDT variables:

 All cut parameters, Longitudinal P, global cos(Θ), thrust, thrust axis, jet masses, jet momenta, jet angles
E_{cm}=350 GeV, L=250 fb⁻¹

			/
condition	BG	Signal	Signf
	15042827,7	24663,1	6,4
#iso lep = 0	12579833,8	21924,6	6,2
240 > P _{tvis} > 30	887408,9	18526,5	19,5
135 > m _{vis}	277267,9	17636,8	32,5
0.27 > cos a	147209,6	16411,2	40,6
N _{chd} > 26	44616,3	11306,0	47,8
$135 > M_{j,max} > 40$	26375,8	10166,5	53,2
Y ₁₂ > 0.05	24821,5	10117,7	54,1
BDT > -0.02	6777,3	9538,1	74,7
	-	-	-
	11092,0	9543,0	66,4
	condition #iso lep = 0 $240 > P_{tvis} > 30$ $135 > m_{vis}$ $0.27 > \cos a$ $N_{chd} > 26$ $135 > M_{j,max} > 40$ $Y_{12} > 0.05$ BDT > -0.02	conditionBG $15042827,7$ #iso lep = 0 $12579833,8$ $240 > P_{tvis} > 30$ $887408,9$ $135 > m_{vis}$ $277267,9$ $0.27 > \cos a$ $147209,6$ $N_{chd} > 26$ $44616,3$ $135 > M_{j,max} > 40$ $26375,8$ $Y_{12} > 0.05$ $24821,5$ BDT > -0.02 $6777,3$	conditionBGSignal $15042827,7$ 24663,1#iso lep = 012579833,821924,6 $240 > P_{t,vis} > 30$ 887408,918526,5 $135 > m_{vis}$ 277267,917636,8 $0.27 > \cos a$ 147209,616411,2 $N_{chd} > 26$ 44616,311306,0 $135 > M_{j,max} > 40$ 26375,810166,5 $Y_{12} > 0.05$ 24821,510117,7BDT > -0.026777,39538,1

Improve the signal significant with MVA (BDT)

- The expected behavior is visible in the missing mass distribution
 - A peak at the Z mass from the Higgs strahlung events
 - A sharp cutoff at 350 GeV- M_{higgs} from the WW fusion events
- > A large tail to higher missing masses was removed by rejecting isolated leptons (the tail originated from Higgs decaying into W or tau) (see plot on page 3)
- Using missing mass in the fitting procedure has yet to be implemented

qqh analysis procedure

Apply forced four-jet clustering and select minimum χ^2 jets pair

ee/µµh analysis procedure

Select di-lepton, then apply forced two-jet clustering

μ/e selection

10<E_{PFO}<100 GeV @250 GeV (10<E_{PFO}<160 GeV @350 GeV)

Calorimeter Edep information

- $E_{ecal}/E_{total} < 0.5, E_{total}/P < 0.4 (\mu)$
- E_{ecal}/E_{total}>0.9, 0.7<E_{total}/P<1.2 (e)

Require track from IP

• σ_{d0} , σ_{z0} , σ_{r0} If # of candidates greater than two, select lepton pair whose mass as close as Z mass

eeh: Signif = 16.9, Eff = 44.1% μμh: Signif = 25.1, Eff =60.8%

ilr iit

- 1. # of e/ μ candidate >= 2
- 2. Selected isolated leptons = 2
- 3. E_{vis}>200 GeV
- 4. NPFOs > 30
- 5. Thrust>0.8 (Thrust<0.8 at 350 GeV)
- 6. |cosθ_z|<0.9
- 7. 70<M_{II}<110 GeV
- 8. 100<M_{jj}<150 GeV
- 9. 120< M_{recoil} < 160 GeV

3D template fitting

Apply 5,000 times template fitting Toy MC \rightarrow Extract accuracy of sigma X BR

İİL

$$\begin{split} \sigma \mathrm{BR}(\mathrm{s}) &= \mathrm{r_s} \times \sigma \mathrm{BR}^{\mathrm{SM}}(\mathrm{s}) \\ \frac{\Delta \sigma \mathrm{BR}(\mathrm{h} \to \mathrm{s})}{\sigma \mathrm{BR}} &= \frac{\Delta \mathrm{r_s}}{\mathrm{r_s}}. \end{split}$$

12

$\Delta\sigma BR/\sigma BR$ results (M_h=125 GeV)

350 GeV vvh is still Zh and WW-fusion inclusive

Update results		250 GeV		350 GeV			
L (fb ⁻¹)	250 fl	b ⁻¹ P(-0.8,	+0.3)	330 f	330 fb⁻¹ P(-0.8, +0.3)		
ΔσBR/σBR	bb	СС	gg	bb	СС	gg	
vvh	1.6%	14.8%	9.7%	1.2%	10.9%	6.7%	
qqh	1.6%	24.0%	18.4%	1.5%	15.0%	13.2%	
eeh	4.4%	57.4%	36.3%	6.5%	>100%	>100%	
μμh	3.4%	34.0%	22.3%	4.6%	65.7%	30.9%	
Combined	1.0%	11.6%	7.6%	0.9%	8.8%	5.0%	
Extrapolation	1.1%	8.0%	6.8%	0.9%	6.5%	5.2%	

- eeh @ 350 GeV only ~10 events remains with $h \rightarrow$ cc samples
- Extrapolation only consider the signal difference between LOI and DBD sample

Difference between LCFIPlus and LCFIVTX

LCFIVTX: Broader distribution on $h \rightarrow cc$

LCFIPlus and LCFIVTX

Prepare 3D templates processed both LCFIPlus and LCFIVTX for same Mh=125 GeV samples with same cut conditions. Apply template fitting with two types of flavor packages

Sample: Zh→qqh 250 GeV, L=250 fb⁻¹, P(-0.8, +0.3)

qqh 250 GeV	LCFIPlus	LCFIVTX
h→bb	1.6%	1.6%
h→cc	24.0%	26.9%
h→gg	18.4%	22.9%
	Dra	liminary r

BCtag variable definition is different: LCFIVTX: C-tag trained with b background LCFIPlus: BCtag=Ctag/(Btag+Ctag)

Preliminary results

B-tagging performance looks comparable with both processor No optimization was applied for LCFIVTX for new DBD samples

Degradation of $h \rightarrow$ cc on DBD sample will not caused by LCFIPlus

Different flavor-likeness definition qqh @ 250 GeV

Different flavor-likeness definition

Template fitting is applied with different flavor-likeness definition Sample: $Zh \rightarrow qqh @250 \text{ GeV}$, L=250 fb⁻¹, P(-0.8, +0.3)

Current	$x_1x_2/(x_1x_2+(1-x_1)(1-x_2))$
Product	x ₁ x ₂
Sum	$(x_1 + x_2)/2$

qqh 250 GeV	Current	x ₁ *x ₂	$(x_1 + x_2)/2$
h→bb	1.6%	1.5%	1.5%
h→cc	24.0%	22.3%	20.5%
h→gg	18.4%	19.9%	16.1%

Sum definition looks slightly improved the relative accuracy especially on $h \rightarrow cc/gg$ channel

Summary and next steps

- Higgs σ BRs are evaluated with M_h=125 GeV
- Compare LCFIVTX and LCFIPlus

– Comparable on $h \rightarrow bb$

- LCFIPlus looks slightly better on $h \rightarrow cc, gg$

• Investigating qqh, eeh channel degradation

- kt clustering, MVA selection

- Evaluate different polarization case
- Update 500 GeV analysis

BACKUP

Signal (M_h=125 GeV) and BGs

E _{cm}	250	GeV	350 (GeV
Signal	σ (-0.8,+0.3)	N (250 fb ⁻¹)	σ (-0.8, +0.3)	N (330 fb ⁻¹)
vvh	77.5	19,383	98.7	32,555
qqh	210.2	52,546	138.9	45,837
eeh	10.9	2,729	10.2	3,381
μμh	10.4	2,603	6.9	2,267
ττh	10.4	2,598	6.9	2,262
Total	319.4	79,860	261.5	86,303
SM BGs				
2f	1.2x10 ⁵	2.9x10 ⁷	7.2x10 ⁴	2.4x10 ⁷
4f	4.1x10 ⁵	1.0x10 ⁷	3.1x10 ⁴	1.1x10 ⁷
6f	Not con	Not considered		47,676
1f_3f	1.3x10 ⁶	3.3x10 ⁸	1.6x10 ⁶	5.1x10 ⁸
aa_2f/4f	5.8x10 ⁵	1.4x10 ⁸	9.6x10 ⁵	3.4x10 ⁸

Extrapolated results (E_{cm}=250 GeV)

Expected accuracies by extrapolating 120 GeV results to 125 GeV w/o cut eff. diff.

E _{cm} =250 GeV	M _h =120 GeV (L=250 fb ⁻¹)			M _h =125	GeV (L=2	250 fb⁻¹)
ΔσBR/σBR	bb	СС	gg	bb	СС	gg
vvh	1.7%	11.2%	13.9%	1.8%	12.9%	11.2%
qqh	1.5%	10.2%	13.1%	1.6%	11.8%	10.5%
eeh	3.8%	26.8%	31.3%	4.0%	31.4%	25.3%
μμh	3.3%	22.6%	23.9%	3.5%	26.3%	19.1%
Combined	1.0%	6.9%	8.5%	1.1%	8.0%	6.8%

BR	120 GeV	125 GeV
BR(bb)	65.7%	57.8%
BR(cc)	3.6%	2.7%
BR(gg)	5.5%	8.6%

Cross sections at M_h=120 and 125 GeV are almost comparable in LOI samples and new samples (Lumi linker difference suppress mass diff.)

Main contribution comes from BR difference between M_h=120 and 125 GeV

Extrapolated results (E_{cm}=350 GeV)

Expected accuracies by extrapolating 120 GeV results to 125 GeV w/o cut eff. diff.

E _{cm} =350 GeV	M _h =120	GeV (L=2	250 fb ⁻¹)	M _h =125	GeV (L=3	830 fb ⁻¹)
ΔσBR/σBR	bb	СС	gg	bb	СС	gg
vvh	1.4%	8.6%	9.2%	1.3%	8.9%	6.6%
qqh	1.5%	10.1%	13.7%	1.4%	10.3%	9.7%
eeh	5.3%	30.5%	35.8%	5.1%	31.8%	25.8%
μμh	5.1%	30.9%	33.0%	4.9%	31.8%	23.5%
Combined	1.0%	6.2%	7.3%	0.9%	6.5%	5.2%
		_				

BR	120 GeV	125 GeV
BR(bb)	65.7%	57.8%
BR(cc)	3.6%	2.7%
BR(gg)	5.5%	8.6%

Cross section	120 GeV	125 GeV
vvh	105.2 fb	98.7 fb
qqh	144.4 fb	138.9 fb
eeh	11.0 fb	10.2 fb
uuh	7 2 fh	6 9 fb

BR, Luminosity, and σ are different