

Recent ECAL Optimisation Studies and Plans

Mark Thomson University of Cambridge

Overview

★This talk:

- Summarize key ECAL results/issues
 - Based on detailed studies from John Marshall
- "Optimal" answer depends on the question...
 - Cost ?
 - Risk technological challenges
- Will only present physics arguments...

★ Starting point:

- SiW ECAL
 - 29 layers
 - 5 x 5 mm² high-resistivity silicon cells
 - Silicon thickness: 500 μm

Study context

- **★** Basic assumption: Particle Flow Calorimetry
 - To 1st order: ECAL measures photons/electrons
 - NLO: ECAL measures start of neutral hadronic showers
 - NNLO: pattern recognition capability confusion

★ For jets:

- ECAL is not main driver of jet energy resolution
- For E_{JFT} < 70 GeV
 - HCAL energy res.
- For E_{JET} > 70 GeV
 - Confusion hadrons

Study scope

★ Physics Models:

- SiW ECAL
- ScW with 2mm Scintillator

- **★** Not making arguments which is best
- ★ Use detector models to probe physics/performance sensitivity

Molière Radius

- **★** Moliere radius is a crude measure of shower width
 - in a high-granularity calorimeter, sample in depth...
 - showers broaden as they develop
 - Broader in SiW than ScW

D. Schoke, F. Simon

Molière Radius

- **★** Moliere radius is a crude measure of shower width
 - in a high-granularity calorimeter, sample in depth...
 - showers broaden as they develop
 - Broader in SiW than ScW

Single Particle Performance

★ Energy resolution for 10 GeV photons:

- ScW slightly better than SiW (but depends on Sc or Si thickness)
- Number of layers (samples) is a much bigger effect
 - Resolution ~ $1/\sqrt{N_{layers}}$
- No clear "physics requirement" on ECAL resolution for γ, e^{\pm}
 - 15 layers of SiW is a pretty poor ECAL

Jet Energy Resolution

- ScW vs SiW: no big difference (i.e. from change in Moliere radius)
- # of layers "important" for lower energy jets (resolution dominates)
- For higher energy jets (where confusion dominates) number of layers makes little difference

Transverse segmentation

★ Jet energy resolution

- ScW vs SiW: again no big difference (Moliere radius)
- Cell size not very important for lower energy jets (simple for reco)
- For higher energy jets (where confusion dominates) more important
 - 5 x 5 mm² \rightarrow 15 x 15 mm² \Rightarrow JER: 3 % \rightarrow ~3.5 %

B-field & ECAL Radius

★5 x 5 mm² ScW

- **★** Rather shallow dependences
 - Smaller/lower-field options are viable for jet E perf.

Other considerations

★ Technology:

- Is an ECAL with small scintillator cells practical?
- Relative costs of ScW and SiW ?
- Relative ease of calibration ?
- Cheaper options for SiW sensors ?
- Should we consider hybrid options?
 e.g. 10 layers of 5 x 5 mm² SiW
 +20 layers 15 x 15 mm² ScW
 - is this really practical?

★ Cost:

- How important is cost at the moment?
- How well do we understand costs?
- Clearest cost reduction through numbers of layers & radius

Impact on Physics ???

★ Jet Energy Resolution:

- Impact of JER diluted by:
 - Jet-finding
 - Combinatorics in associating jets to bosons in e.g. WW→qqqq
 - Beam related backgrounds
- But to date, no/few quantitative study (see next slides)
- Do all models give adequate performance?
 - $5 \times 5 \text{ mm}^2 \rightarrow 15 \times 15 \text{ mm}^2$
 - 30 layers → 15 layers

(and/or

★ Electron/Photon Resolution:

- No quantitative studies selectrons?
 - My bias: want inherent ECAL performance $< 20 \% / \sqrt{E({\rm GeV})}$

★ Hadronic Tau decays:

- Potential probe of spin-structure and CP through tau polarization
- Cell size will impact ability to identify hadronic tau decay modes
 - Studies not mature

Physics Optimisation

- **★ New study "invisible Higgs"** (Kelvin Mei, M.Phil, Cambridge)
 - Simple final state: HZ (H→invis)(Z →qq)
 - Two main variables: di-jet Z mass, recoil mass
 - Most direct probe of jet energy resolution?
- **★** Use ECAL parameters as proxy for jet energy

Not trivial - a number of steps:

- Select 4 ECAL models
 - 4 different jet E res.
- Simulate main samples
 - study physics sensitivity
- Map back to jet energy resolution

e.g. di-jet mass

30 layers: 5x5 mm²

30 layers: 15x15 mm²

15 layers: 5x5 mm²

15 layers: 15x15 mm²

- **★** Full simulation studies
 - Full analysis performed (ILC 350 GeV) for ILD
 - For alternatives (and comparison):
 - Signal + main background (qqvv)
 - BDT based selections tuned for each model

Model	$\Delta\sigma_{inv}$ / σ_{SM}	σ _E /E
30 layers: 5 x 5		
30 layers: 15 x 15		
15 layers: 5 x 5		
15 layers: 15 x 15		

- **★** Full simulation studies
 - Full analysis performed (ILC 350 GeV) for ILD
 - For alternatives (and comparison):
 - Signal + main background (qqvv)
 - BDT based selections tuned for each model

Model	$\Delta\sigma_{inv}$ / σ_{SM}	σ _E /E
30 layers: 5 x 5	0.43 %	
30 layers: 15 x 15	0.45 %	
15 layers: 5 x 5	0.45 %	
15 layers: 15 x 15	0.48 %	

Connect to jet resolution

Highest energy jet in event

Lowest energy jet in event

knowledge of jet energy resolution vs energy (for each model)

$$\frac{\sigma_m}{m} = \sqrt{\left(\frac{\sigma_{E_1}}{E_1}\right)^2 + \left(\frac{\sigma_{E_2}}{E_2}\right)^2} \quad \Box$$

Model	$\Delta\sigma_{inv}$ / σ_{SM}	σ _m /m	< o _E /E >
30 layers: 5 x 5	0.43 %		
30 layers: 15 x 15	0.45 %		
15 layers: 5 x 5	0.45 %		
15 layers: 15 x 15	0.48 %		

Model	$\Delta\sigma_{inv}$ / σ_{SM}	σ _m /m	< o _E /E >
30 layers: 5 x 5	0.43 %	4.8 %	3.4 %
30 layers: 15 x 15	0.45 %	5.3 %	3.8 %
15 layers: 5 x 5	0.45 %	5.2 %	3.7 %
15 layers: 15 x 15	0.48 %	5.6 %	4.0 %

Model	$\Delta\sigma_{inv}$ / σ_{SM}	σ _m /m	< o _E /E >
30 layers: 5 x 5	0.43 %	4.8 %	3.4 %
30 layers: 15 x 15	0.45 %	5.3 %	3.8 %
15 layers: 5 x 5	0.45 %	5.2 %	3.7 %
15 layers: 15 x 15	0.48 %	5.6 %	4.0 %

17 % increase in jet E resolution

Conclusions

★ECAL optimisation

- → in principle, SiW & ScW give similar performance
- **→** cost reduction options (jet energy resolution):
 - reduce ECAL radius
 - reduce number of layers price = poorer EM resolution
- **★Physics optimisation**
 - comparison of specific models ~ easy
 - connecting back to "performance" goals is much harder