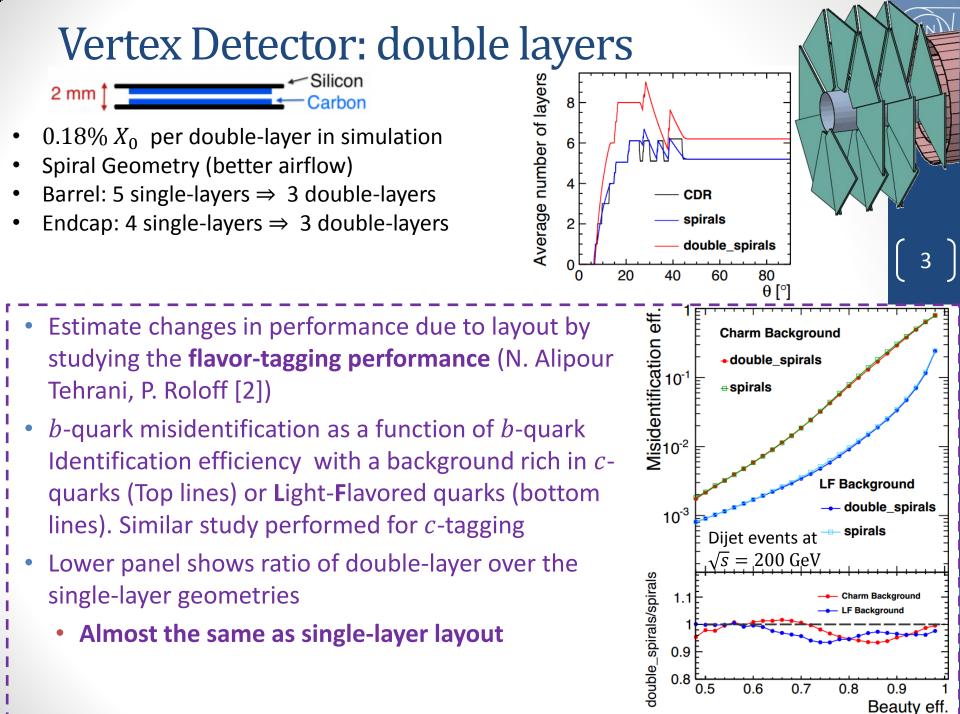
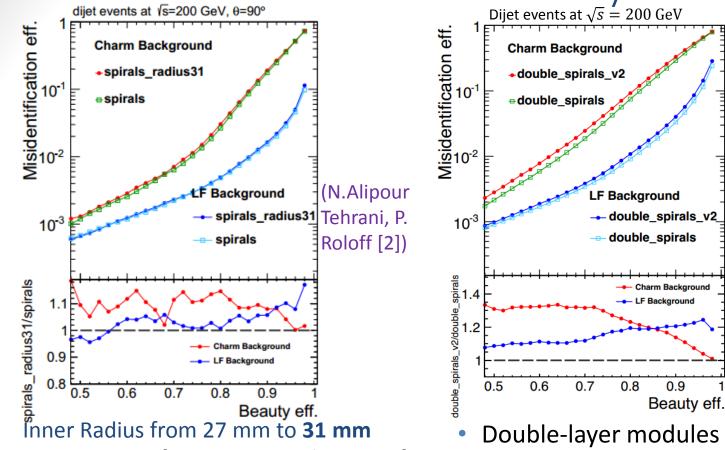


#### Nikiforos Nikiforou CERN/LCD

On behalf of the CLICdp Collaboration


ILD Meeting 2014 Oshu City, September 07<sup>th</sup>, 2014




### **Introduction - Outline**

- At CLICdp we are working towards an updated simulation model for the CLIC detector: aim to have a model by the end of this year
  - Will be used for next round of physics studies
- Projected characteristics of the new simulation model:
  - All-Silicon tracker to cope with the high occupancy of the CLIC environment
  - Dimensions and B-field defined by particle flow performance
  - Optimize forward acceptance of trackers and calorimeters
- Incorporate updated input from engineering/material studies, cost projections
- Ongoing optimization studies to help determine optimal detector parameters (this talk)
- Will mainly summarize the studies for the Vertex Detector, Tracker, ECal and HCal
- Briefly mention some of the open points not covered today



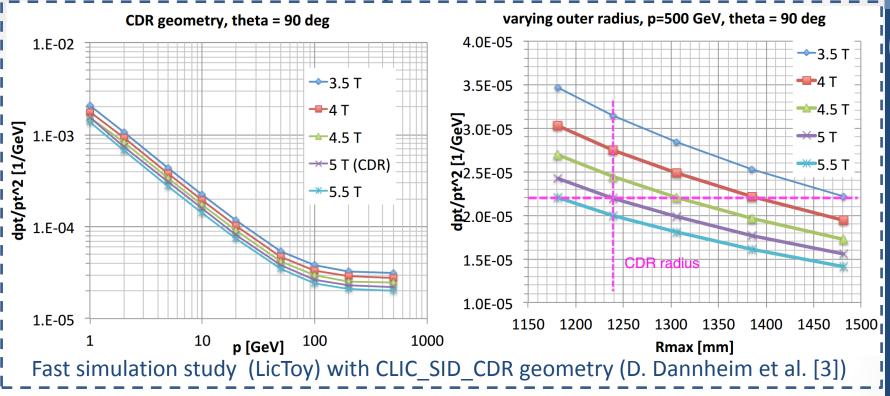


#### Vertex Detector : Effect of Inner Radius / Material



4

ERN


- Compensates for increase in the rate of Incoherent e-pair background if B-field is reduced
- Small effect in flavor-tagging performance

- Double-layer modules were simulated with twice as much material
- Extra material leads to undesirable increase of fake rate

0.9

In the new detector model: Use double layers with spirals and modules with 0.2% $X_0$  per (single) layer

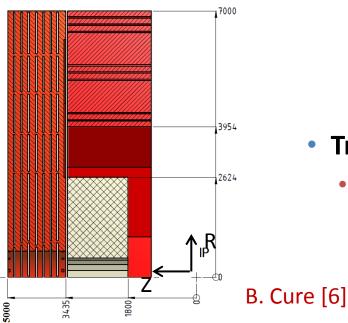
### Silicon Tracker Optimization

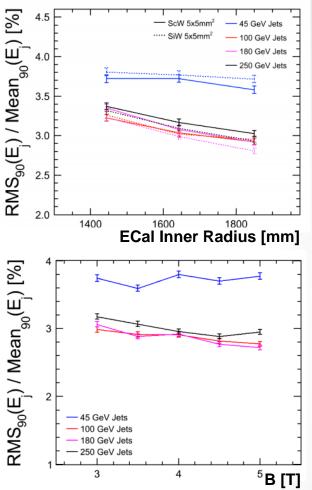


Tracking performance depends on tracker radius and magnetic field

 $\frac{\sigma(p_{\rm T})}{p_{\rm T}^2} \propto \frac{\sigma^{meas}}{\sqrt{NB \cdot R^2}}$ 

Stronger dependence on **R** 


• Can compensate reduction of B in new detector by rescaling R by


$$\sqrt{B_{nom}/B}$$

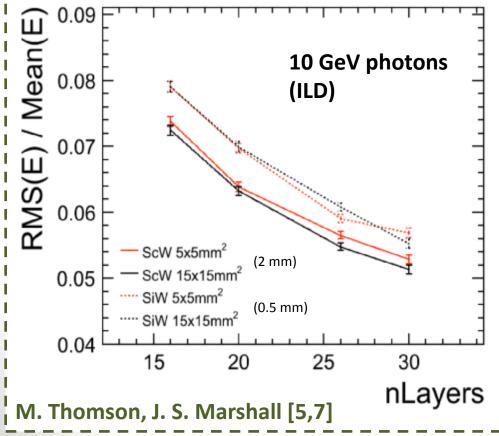
 Aim to increase from 1.3 m (CLIC\_SID) but not much gain by going to 1.8 m (CLIC\_ILD)

#### Silicon Tracker: Conclusions and Plans $\frac{3}{2}$

- B-Field and R affect PFA Performance
  - Previous ILD studies by M. Thomson and J. S. Marshall [4,5]
- Aiming for an outer tracking radius of 1.5 m
- A magnetic field strength of up to 4.5 T should be technically feasible
  - Will need to make a decision on 4 Vs 4.5 T
- Effects of non-uniform magnetic field currently under investigation
  - Implementation of more realistic field map underway
  - Changes in tracking software






6

- Tracker length: at least ~CLIC\_ILD ( 4.6 m)
  - Considering reducing Endcap Yoke thickness by  $\sim 1.2 \text{ m}$  and employing End coils

# ECal Optimization: Active Material, Number of Layers, Granularity

ILD-based baseline model: SiW ECal with 29 layers (23  $X_0$  / 1  $\lambda_I$ ):

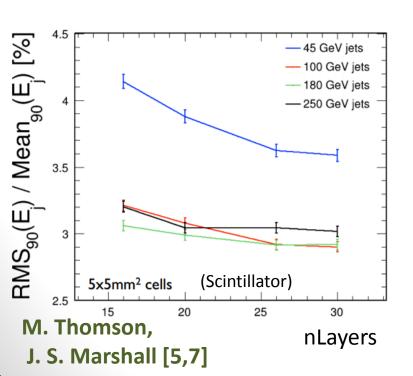
- Tungsten absorber: 20x2.1 mm + 9x 4.2 mm
- Silicon Active material, 500 μm thickness, 5x5 mm<sup>2</sup> cells



 Scintillator instead of silicon may give a slightly better resolution September 7th, 2014

Oshu City

-D Meeting,


- Depends on active element thickness
- Also considered Si/Sc combinations
- Stronger dependence on number of layers ( $\sim 1/\sqrt{N}$ )



8

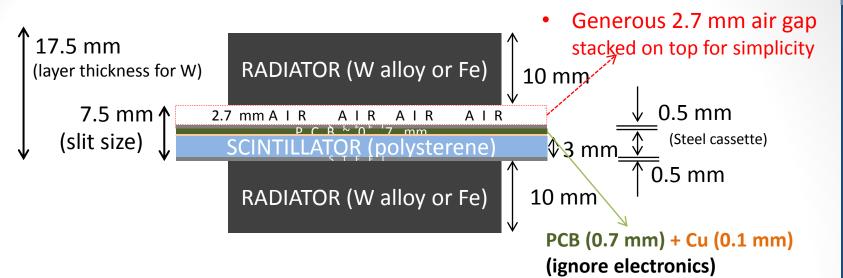
# **ECal Optimization: Jet Energy Resolution**

- Si vs Sc: No significant effect on JER
- # Layers: Not very important for higher energy jets (PFA confusion dominates): Not much more improvement from 25 to 30 layers
- Cell size: Becomes important for higher energy jets (where confusion dominates)
  - JER degradation from 3% to ~3.5% when increasing cell size to 15x15 mm<sup>2</sup>
  - Combinations of different granularities in layers considered
    - No significant gain for the extra complexity



Working hypotheses for the simulation model:

- Silicon active material, Tungsten absorber
- Decrease number of layers to 25 while keeping the same depth in #X<sub>0</sub> (scale absorber thickness accordingly)
   Use 5x5 mm<sup>2</sup> cells throughout

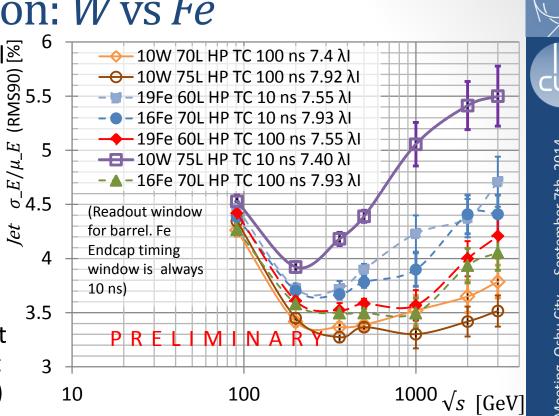

## **HCal Optimization: Introduction**

- Will need to provide input to ongoing engineering studies for feasibility of HCal Barrel assembly and magnet construction:
  - Granularity (especially number of layers)
  - Choice of absorber material (W or Fe) and thickness
  - Thickness and assembly of active layer (cassette)
    - Try to reduce thickness of active layer, while keeping a realistic assembly scenario
- Assume  $R_{outer}^{tracker} = 1500 \text{ mm} \rightarrow R_{inner}^{HCal} = 1750 \text{ mm}$  (for 29L ECal)
- Previously estimated optimal depth of HCal for CLIC at  $\sim 7.5\lambda_I$ Drive  $R_{outer}^{HCal}$  and
  - Variation of parameters around that central value
  - Limits options in granularity/number of layers
- For the HCal Endcap, use Steel absorber, 60 layers x 20 mm, keep constant for these studies

solenoid inner bore

requirements

#### HCal Barrel in the new CLIC Detector Model




- Adapted ILD cassette, with steel explicitly included
  - Not assumed part of absorber
- Investigating the following model variations:

| Detector      | #<br>Layers | Abs<br>Thick | Cass.<br>Thick | Air | Total<br>Depth | Total<br>Thickness | Inner R | Outer Face<br>Position | Outer Radius |
|---------------|-------------|--------------|----------------|-----|----------------|--------------------|---------|------------------------|--------------|
|               |             | mm           | mm             | mm  | #λI            | mm                 | mm      | mm                     | mm           |
| CLIC_ILD_CDR  | 75          | 10           | 5*             | 1.5 | 7.42           | 1237.5             | 2058    | 3295.5                 | 3341.2       |
| CLIC_SID_CDR  | 75          | 10           | (*Scint)       | 1.5 | 7.42           | 1237.5             | 1447    | 2684.5                 | 2721.7       |
| W + cassette  | 75          | 10           | 4.8            | 2.7 | 7.92           | 1322.5             | 1750    | 3072.5                 | 3115.1       |
| W + cassette  | 70          | 10           | 4.8            | 2.7 | 7.40           | 1235               | 1750    | 2985                   | 3026.4       |
| Fe + cassette | 60          | 19           | 4.8            | 2.7 | 7.55           | 1609               | 1750    | 3359                   | 3405.6       |
| Fe + cassette | 70          | 16           | 4.8            | 2.7 | 7.93           | 1661               | 1750    | 3411                   | 3458.3       |

### HCal Optimization: Wvs Fe

- Studying JER for each model  $\frac{8}{5}$  as a function of  $\sqrt{s}$  for  $2 \rightarrow uds$  events  $2 \rightarrow uds$
- Digitization/PFA Calibration <sup>H</sup>/<sub>H</sub>/<sub>H</sub> vsing procedure from <sup>H</sup>/<sub>H</sub>/<sub>H</sub>
  Cambridge (with γ, μ, K<sup>0</sup><sub>L</sub>)
  Show also effect of timing <sup>H</sup>/<sub>H</sub>
- Show also effect of timing cuts on models
- Generally, W needs a larger readout window for readout (response for W plateaus at ~ 100 ns vs ~10 ns for Fe)



- Preliminary results show that tungsten performs very well for a 100 nswide readout window and offers a compact HCal, therefore is a very attractive option
- However, tungsten cost, availability, properties, machinability are also equally important points to be considered
- Will soon have to make a decision on the material to be used in simulation model, taking everything into consideration

## **Open Points – Not Covered Today**

- Optimization of the forward region
  - Is extension of coverage (especially HCal) feasible?
  - Is there a justifiable benefit over the background in potential physics analyses?
- Position of Final Focusing Quadrupole (QD0): Inside Vs Outside
  - Significant challenges for assembly and support (esp. if Inside)
  - Need to review impact on luminosity (esp. if Outside)
- Ongoing implementation of new CLICdp detector in DD4hep
  - Going well! The various subdetectors are being implemented
  - Dedicated presentation during the software part ...



### **Summary and Conclusions**

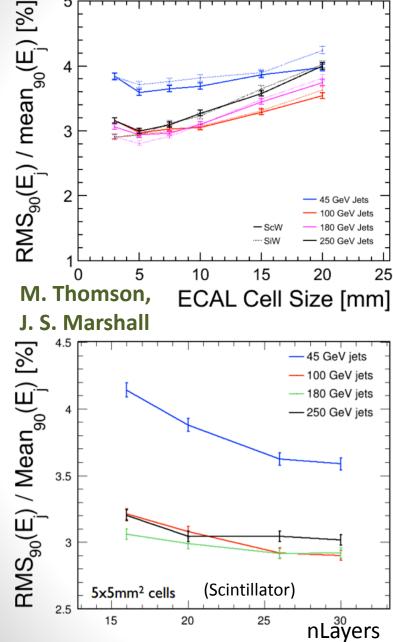
- Working on a new CLIC detector simulation model by end of year
- Some of the projected parameters as of today
  - B-field: 4 4. 5 T T.B.D.
  - **Double-layer** vertex detector modules with **spiral** layout
  - All-silicon tracker
  - $R_{outer}^{tracker} \sim 1.5 \text{ m}, L^{tracker} \gtrsim 4.6 \text{ m}$
  - SiW ECal: 25 layers/5x5 mm<sup>2</sup> cells, 23  $X_0$  / 1  $\lambda_I$
  - HCal: Use 3 mm scintillator
    - HCal Barrel: W vs Fe absorber T.B.D., aim for  $\sim 7.5 \lambda_I$
    - HCal Endcap: 20 mm Fe absorber, 60 layers
- Some additional important open points
  - Position and integration of QD0
  - Optimization of forward region
- Detector geometry is already being put together in DD4hep



#### References

- 1. A. Miyamoto et al., Physics and Detectors at CLIC : CLIC Conceptual Design Report, CERN-2012-003
- 2. N.Alipour Tehrani and P. Roloff, Optimisation Studies for the CLIC Vertex-Detector Geometry, CLICdp-Note-2014-002
- 3. D. Dannheim et al., Slides at https://indico.cern.ch/event/309925/contribution/2/material/slides/0.pdf
- 4. M. Thomson, Nucl.Instrum.Meth. A611 (2009)
- 5. J. Marshall, Slides at http://indico.cern.ch/event/309926/contribution/1/material/slides/0.pdf
- 6. B. Cure, Slides at https://indico.cern.ch/event/314325/contribution/1/material/slides/1.pdf
- 7. M. Thomson, Slides at http://indico.cern.ch/event/309926/contribution/1/material/slides/0.pdf

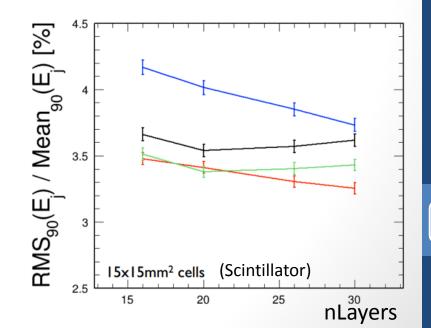
September 7th, 2014


LD Meeting, Oshu City



#### **BACKUP MATERIAL**

15

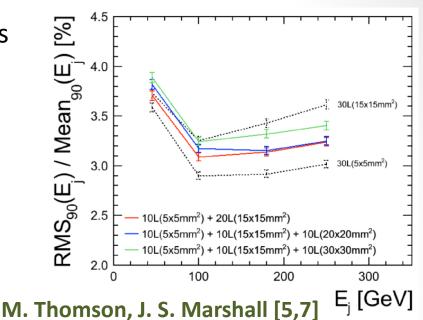

# ECal Optimization: Jet Energy Resolution



- Si vs Sc: No significant effect on JER
- # Layers : Not very important for higher energy jets (PFA confusion dominates)
  - Not much more improvement from 25 to 30 layers

**Cell size:** Becomes important for higher energy jets (where confusion dominates)

JER degradation from 3% to ~3.5%
 when increasing cell size to 15x15 mm<sup>2</sup>






6

# **ECal: Final Thoughts and Conclusions**

- Combinations of different cell sizes in layers were considered
  - Increased complexity
  - Only modest improvement over 30L@15x15 mm<sup>2</sup> option
- 30L@5x5 mm<sup>2</sup> still appears to be the most attractive solution



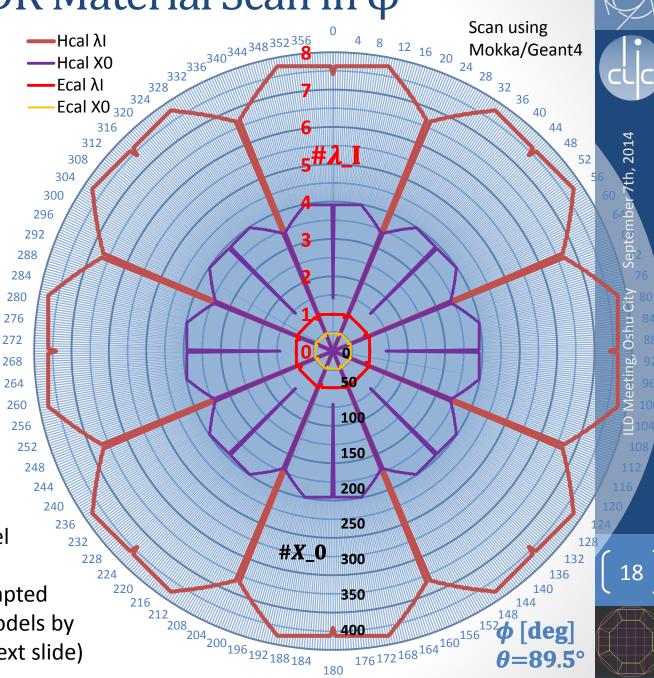
September 7th, 2014

LD Meeting, Oshu City

Working hypotheses for the simulation model:

- Silicon active material, Tungsten absorber
- Decrease number of layers to 25 while keeping the same depth in #X<sub>0</sub> (scale absorber thickness accordingly)
- Use 5x5 mm<sup>2</sup> cells throughout

#### CLIC\_ILD\_CDR Material Scan in φ


#### Geometry

#### Parameters:

(from CDR and <u>http://www-</u> <u>flc.desy.de/ldcoptimization/tools/mok</u> <u>kamodels.php?model=CLIC\_ILD\_CDR</u>)

| HCAL BARREL      | SHcalSc02    |  |  |  |
|------------------|--------------|--|--|--|
| Number Of Layers | 75           |  |  |  |
| Number Of Sides  | (8) 16       |  |  |  |
| Inner Radius     | 2058 mm      |  |  |  |
| Outer Radius     | 3341 mm      |  |  |  |
| Z Length         | 4700 mm      |  |  |  |
| Section Phi      | 0.52 radians |  |  |  |
| Cell Size U      | 30.0 mm      |  |  |  |
| Cell Size V      | 30.0 mm      |  |  |  |
| Layers 0 - 74    |              |  |  |  |
| 10 mm            | Tungsten     |  |  |  |
| 5 mm (sensor)    | Polystyrene  |  |  |  |
| 1.5 mm           | Air          |  |  |  |
|                  |              |  |  |  |

- No realistic cassette implemented in this model
- For optimization studies, implement a cassette (adapted from ILD) and simulate models by modifying ILD\_01\_v06 (next slide)

