

Review of a "small ILD" option

V. Balagura, V. Boudry*, J.C. Brient, H. Videau, D. Yu, M. Anduze, E. Becheva, R. Cornat, M. Frotin, S. Pavy

École polytechnique

ILD meeting 2014 Oshu, Iwate, Japan Sept 7th, 2014

Introduction

Si-W ECAL and Yoke are cost drivers of ILD \rightarrow re-optimisation ? impact on \Rightarrow TPC, ECAL (\propto R²), HCAL, Coil, Yoke, Cavern, (Tunnel)

- ILD dimensions had to be fixed early (LoI: cost, etc.)
- Lol results already showed a limited loss of performances when TPC radius is reduced (same for TPC length)
- Performance might depend on granularity
 ⇒ higher granularity compensation for smaller dimensions ?
- What does it give all together ?
 - 2 main parameters to be optimised:
 R_{TPC} (~ L_{TPC}) & N_{Layers} (ECAL, HCAL)
 - \triangle ECAL performance (cell size) depends on:
 - SW (!)
 - HCAL: SDHCAL vs AHCAL, 1×1cm² vs 3×3 cm²
 - B field; TPC perf.

⇒ Performance results & realistic Geometry for a reduced radius option.
 Vincent.Boudry@in2p3.fr
 Review of "Small ILD" SiWECAL | ILD 2014 meeting | 07/09/2014

2/19

Simulation studies

Shown @ LCWS'13 (work by Trong Hieu Tran)

https://agenda.linearcollider.org/getFile.py/access?contribld=67&sessionId=35&resId=0&materialId=slides&confld=6000

- Evaluation of the JER vs R_{INNER} ($\leftrightarrow R_{TPC}$, @ fixed R/L ratio).
- Using PandoraPFAnew v0.12 and full calibration procedure
 - μ , γ , K^o_L samples \Rightarrow ECAL/HCAL intercalib + E2H/H2H + angular corr.
- ILD_01/2_v05(SEcal04, AHCAL/SDHCAL)
 - SiW ECAL: 5×5 mm², AHCAL: 3×3 cm², sDHCAL: 1×1 cm²

Results

- ≤10% for RI_{NNER}=1800→1400mm

Variation of N_{Layers}

Shown @ 6th ILD Optim meeting (16/07/2014) [Internship work of Dan Yu (LLR)] https://agenda.linearcollider.org/getFile.py/access?contribId=2&resId=0&materialId=slides&confld=6435

- Variation of ECAL's N_{Layers} for R=1450mm, HZ_{Barrel}=1848mm
 on ILD_02_v05
- Exact Same procedure as previous study
 - Non-Linearity $\leq 1\%$
- For $|\cos\theta| \le 0.7$
- Results
 - JER + ≤6% @45 GeV

number of Si layers	W layers (1st section)	${ m Thickness}\ { m (mm)}$	W layers (2nd section)	$\begin{array}{c} {\rm Thickness} \\ {\rm (mm)} \end{array}$
20	13	3.15	6	6.3
26	17	2.4	8	4.8
30	20	2.1	9	4.2

(LLR) plans for the simulation of the SiW ECAL in a reduced version ILD

- R 1800→1400 @ N_{layers}= "30": JER +≤10 %

Reduction of number of layers

- N_{layers} "30" → "20" @ R=1800: JER + ≤9% (THT @ LCWS'12)
- − N_{layers} "30" → "20" @ R=1400: JER + ≤6%

 \Rightarrow JER +<16% wrt "standard" ILD

- PRELIM: Barrel ONLY,
 N_{Layers} handling inclomplete,
 ≠ Barrel/Endcaps
- Gap between 45 and 100 GeV \Rightarrow 70 GeV
- ⇒ Simulation modifications for reduced radius & layers.

Duram jets : y = 0.006, Vs = 250 GeV events 4f ww h 4f ww sl ±± 4fzzh 4f zz s **@45GeV** 0.01 Add 70 GeV ? 0.005 50 100 150 200 E. [GeV]

Example on "non optimized" geometry

Simulation modifications

Cleaning & adapatation of ECAL Mokka drivers: [D. Jeans + J. Marshall + E. Becheva + V. Boudry + Dan Yu]

- Many cleaning made by D. Jeans \Rightarrow SECal05
 - Bugs, improved GEAR output, handling of pre-shower
- Documentation being reviewed
- TBD: Implementation of SEcal05 in DDHEP (based on S. Lu implementation of SEcal04 + tests)

New ECAL Driver (SEcal06) to correct defects (mostly in Endcaps).

- Missing dead materials, "corners"
- Consistant treatment of Barrel/Endcaps
- Better handling of Layers, optionnal pre-shower

Realistic parameters

From preliminary mechanical model \Rightarrow in simulation & cost

- Reduced radius **R**_{INNER}=1400mm.
- Base unit = Wafer size
 - Largers Wafers: 6" \rightarrow 8" (OK from HPK, LFoundry); smaller wafers (4") in 2nd part ?
 - Wafer side: ~90 \rightarrow **126** mm; Alveola ~200mm \rightarrow 253,8 mm;

Barrel: 5 modules of 3 alveola

 $- L_{Barrel} = 3829 mm (Z_{endcap} = 3929 mm).$

Endcaps: Quadrants of 2 modules of 2 and 3 alveola

- with R(ECAL Ring) = 40cm + Integer number of Wafers + $\frac{1}{2}$ Wafers

 $\Rightarrow R_{Endcap} = 1676mm$

 $N_{layers} = 22 = 14 + 8$ (single and double W thickness)

Wafer thickness 500→ ~725µm

- Improved $\sigma(E\gamma) \sim \sqrt[5]{t} \Rightarrow \sim \text{recovery of } N_{\text{layers}} \text{ effect.} \Rightarrow \text{compensation of } N_{\text{Layer}} \text{ loss.}$
- ECAL thickness = 223,85 mm

Mechanical model

Vincent.Boudry@in2p3.fr

Mechanical Model (2)

- epaisseur_structil = 0,2mm

Courtesy of M. Anduze

Small ILD ECAL Cost

Complete re-evaluation for the ressource survey in July (PRELIMINARY)

- Number of elements
 - Wafers, ASICs, PCB's, SLABs, structures,
 - moulds, processes, test benches
 - transportation boxes
- Man•Years
 - Reception, Tests, Mounting, Installation
- doubled X-cheked by scaling laws (scripts, excel)
 - But costs \neq than in TDR
- Outcome:
 - Cost ratio 1.4m/1.8m of 47,5%
 - Used for the ressource survey rescaled to 1.8m.

Summary

Preliminary^{*} studies hints that reduction of R_{ECAL} 1,8m \sim 1,4m (-22%) and reduction of layers have limited effect on performances for JER:

- JER +≤10% from radius
- JER +≤6% from N_{layers} ~compensated by thicker Wafers
- Reduced Mechanical model is available
 - Used for full costing \rightarrow 47% of "standard ILD" SiW ECAL.
 - To be evaluated for TCP, HCAL, Yoke, Coil, Hall, etc. \Rightarrow sizeable reduction!
- X-check of feasabilty:
 - Larger & thicker wafers to be tested (ordered)
 - (Mechanical) PCB design to be updated

Simulation is being prepared, with improvement \Rightarrow perf: single JER for all cos θ , on tau's, ...

Vincent.Boudry@in2p3.fr Review of "Small ILD" SiWECAL | ILD 2014 meeting | 07/09/2014

* prelim = non optimised sim models, non-optimized SW.

Extras

New ECAL layout & SEcal06 driver

- Option to render the 1st Si layer standard ⇒
 1 layer of W in front 1st alveola ⇒ no preshower; keep option to *not* have it.
- more regular structure: $n_1/2 \times (W_1 + [Si+W_1+Si]) + n_2/2 \times (W_2 + [Si+W_2+Si])$
 - Now : $[Si+W_1+Si] + (n_1-1)/2 \times (W_1+[Si+W_1+Si]) + W_1 + n_2/2 \times ([Si+W_2+Si] + W_2)$
- For hybrid: alternate Si and Sc alveola [*]
- Unite Barrel and Endcaps drivers

Missing in Simulation

Cost / performance optimisation (review by V. Balagura)

Global geometric parameters

- (W thickness ≡ constant); cell size = 5×5 mm ²		
– R _{TPC}	single JER	[Trong Hieu Tran, LLR]
• at constant (R/Half-z)		
- Number of layers	single JER	[Trong Hieu Tran, LLR]
• @		
Construction Parameters		
– PCB thickness	single JER	[D. Jeans, Tokyo U.]
• @ 45.5, 180, 250 GeV		
- Si Guard Ring Thickness	(homogeneity) & singe JER	[A. Suhail, LAL]
 @ constant wafer size; unique global correction 		
Resilience		
 Amount of dead pixels 	single Photons & JER	[D. Jeans, Tokyo U.]
 random removal of hits ; unique global correction 		
Optimisation in term of performances.		
- RMS ₉₀		
– JER on uds events @		
 Single γ (3, 10, 100, 500 GeV). 		

Vincent.Boudry@in2p3.fr

Single jet energy resolution as a function of the thickness of PCB with embedded electronics.

Single photon energy resolution as a function of the number of silicon layers for four photon energies.

ILD jet energy resolution in the barrel regulater $[c_{ECA}]$ [man] < 0: 7 as a

Review of "Small ILD" SiWECAL | ILD 2014

Guard Ring studies

An ECAL average signal versus azimuthal angle. The loss in inter-sensor dead areas is visible (between barrel modules, barrel and endcap

and between the sensors, the latter depends on the guard ring).

the single jet energy resolution after a simple dependent correction as a function of the guard ring thickness.

Resilience

Vincent.Boudry@in2p3.fr