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Mark Thomson's analysis of o(ZH) with Z — gq uses
two measurements to obtain the cross section:
o(ZH) = o(ZH)-BR(visible) + o(ZH)-BR(invisible)
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In order to use this cross section measurement in our Higgs analyses

we have to quantify the penalty associated with the fact that
o(ZH)-BR(visible) is "almost model independent”. By how much must we
blow up Ac(ZH)-BR(visible) to account for the fact that the efficiencies
differ by 10% or more?

Model Indepedence A

* Combining visible + invisible analysis: wanted M.I.
= j.e. efficiency independent of Higgs decay mode

Decaymode €807 Eifioos €% +e™
H — invis. <0.1% 20.7 % 20.7 %
H—qq/gg 20.6 % <0.1% 20.6 %
H— WW* 19.5% <0.1% 19.8 % —
H - 27" 18.1% 0.9 % 190% | |Very similar
Hotmt™ 21.4 % 0.1% 21.5% efficiencies
H — vy 22.1% <0.1% 22.1%
H— Zy 17.6 % <0.1% 17.1%
H—ptp~ 20.6 % <0.1% 206% |
H—-WW*—>qqqq 193% <0.1% 193% |
Ho>WW* >qqlv 196% <0.1% 19.6 % Look at wide
H—WW* 5qgtv 199% <0.1% 19.9 % WW
HoWW* Sy 220% 0.3% n3g [ 1anNge of
HoWW* slviv 167% 0.3% 17.0 % topologies
HoWW*' vy 122% 1.3% B6%

Mark Thomson Fermilab, May 2014 31



We have used an approach where we use all of our 6-BR measurements
for visible Higgs decays to obtain an estimate of the average signal
efficiency for o(ZH)-BR(visible). It is then straightforward to propagate

the o+BR errors to the error on o(ZH)-BR(visible), This means that

one must take into account the correlation between the 6+BR measurements
and our o(ZH) measurement from hadronic Z decays when we fit

for couplings and total width. It also means that we must develop c-BR
analyses for all possible BSM Higgs decays



Let
Y = g(ZH)-BR(visible)
Q = Number of signal + background events in o(ZH)-BR(visible) analysis
B = Predicted number of background events in o(ZH)-BR(visible) analysis
= = Average efficiency for signal events to pass o(ZH)-BR(visible) analysis
L =luminosity
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Wi = L7

@ = Number of signal + background events in o(ZH)-BR. analysis
S = Predicted number of background events in o(ZH)-BR. analysis

n, = efficiency for Higgs decay i to pass o+BR. analysis

K. =number of signal + background events common to had Z recoil
and o-BR. analyses
E = number of signal + background events unique to had Z recoil analysis

& = number of signal + background events events unique to o-BR. analysis
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But, if we are confident in our measurement of o(ZH)-BR(H — BSM),
why don't we simply calculate o(ZH) using Za(ZH)-BRi ?

In fact this is what Michael Peskin does in his fits when
he uses the constraint ZBRi =1 . If this constraint implicitly includes

an hadronic recoil ZH cross section measurement, then the importance

of the leptonic recoil ZH cross section measurement should diminish when
this constraint is imposed. This indeed is the case, as demonstrated in
the following slides where Higgs couplings are calculated for different
values of a Ac,,, scale factor.



Energy Diff Lum Run Time* Int Lumi
250 GeV 0.75 cm™@s™ 2.4 yr 280 fb'

*No installation or ramp up; simply assume 50% eff. or 1.58 x10" s per year.

Ao, scale 1 1 2 2 4 4 8 8

> BR =1? no yes no yes no yes no yes
Y4 1.2% 0.74% 2.4% 0.87% 4.9% 0.91% 9.8% 0.93%
W'W~ 4.5% 4.4% 5.0% 4.4% 6.5% 4.4% 10.8% 4.4%
bb 4.9% 4.4% 5.4% 4.4% 6.8% 4.4% 10.9% 4.4%
cC 6.3% 5.9% 6.6% 5.9% 7.9% 6.0% 11.6% 6.0%
g9 5.8% 5.5% 6.2% 5.5% 75% 5.5% 11.3% 5.5%
T 53% 4.8% 57% 4.9% 7.1% 4.9% 11.1% 4.9%
vy 16.7% 16.6% 16.9% 16.6% 17.4% 16.6% 19.4% 16.6%

I 10.8% 8.3% 13.7% 8.4% 21.8% 8.4% 40.3% 8.4%
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Energy Diff Lum Run Time* Int Lumi
250 GeV 0.75cm™s™  16.9yr 2000 fb*
350 GeV 0.75cm™@s™ 1.3 yr 200 fb'
500 GeV 0.75cm™s™*  10.6yr 3000 fb'

*No installation or ramp up; simply assume 50% eff. or 1.58 x10" s per year.

T

Ao, scale 1 1 2 2 2 z 8 8

> BR =1? no yes no yes no yes no yes
7 0.41% 0.21% 0.81% 0.23% 1.6% 0.24% 3.3% 0.24%
W'W -~ 0.46% 0.20% 0.85% 0.21% 1.7% 0.21% 3.3% 0.21%
bb 0.63% 0.39% 0.95% 0.39% 1.7% 0.39% 3.3% 0.39%
cc 1.1% 0.98% 1.3% 0.98% 1.9% 0.98% 3.4% 0.98%
ag 0.89% O0.77% 1.1% 0.78% 1.8% 0.78% 3.4% 0.78%
T 0.88% 0.73% 1.1% 0.73% 1.8% 0.73% 3.4% 0.73%

vy 3.0% 2.9% 31% 2.9%  3.4% 2.9% @ 4.4% 2.9%
r 2.0% 0.79% 3.5% 0.79% 6.6% 0.79% 13% 0.79%



It is clear from these results that (ZH)
is being calculated implictly using o(ZH) = > o(ZH)-BR,

whenever the constraint ZBRi =1 is imposed.

It appears that we have no need for a separate direct hadronic ZH
recoil cross section measurement once we are confident that we
have o(ZH)-BR(H — visible BSM) under control. In fact, it appears
that we don't even need the classic leptonic ZH recoil cross

section measurement in this case!
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Caveats :

These results assume that the true BR(H - BSM)=0
and that BR(H — visible BSM)<0.9% at 95% CL can be

achieved with +/s=250 GeV & 250 fb™ or /s=350 GeV & 500 fb* .
(That is, it has been assumed that the same precision can be achieved
for invisible decays and visible BSM decays.)

This has yet to be demonstrated.

Also, we have to check how these conclusions are
altered if the true BR(H > BSM)=1% , or 10%.
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215 page "Exotic Decays of the 125 GeV Higgs Boson" arXiv:1312.4992 : s this a starting point for
a complete o ¢BR(H —BSM) analysis?
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Questions

e What is the required precision on «BR(H — BSM) if we
want to impose the constraint » BR, =1 ?

e What is the required precision on o«BR(H — BSM) if
want to use the direct hadronic recoill
measurement of o(ZH)?

e Do the 18 different o« BR(H — BSM,) searches outlined in
arXiv:1312.4992 cover all possible BSM decays? If not, what
else is needed? And once we have answered that question,
how do we prove that everything has indeed been covered?
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Let
Y = o(ZH)-BR(visible)
Q = Number of signal + background events in o(ZH)-BR(visible) analysis
B = Predicted number of background events in o(ZH)-BR(visible) analysis
= = Average efficiency for signal events to pass o(ZH)-BR(visible) analysis
L = luminosity

_9-8 :ézy/igi:Zz//i where
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v, = o(ZH)BR,
& = efficiency for events from Higgs decay i to pass o(ZH)-BR(visible) analysis
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o —f

L7,
@ = Number of signal + background events in o(ZH)-BR. analysis
S = Predicted number of background events in o(ZH)-BR. analysis

n, = efficiency for Higgs decay i to pass o+BR. analysis

W, =

K. = number of signal + background events common to had Z recoil

and o-BR. analyses
E = number of signal + background events unique to had Z recoil analysis

& = number of signal + background events events unique to o-BR. analysis

S, + [
o =K, +¢ S =w-p r =31 A
Si
K,
A= — N =Lo,,  =BR, 5 =& -
@
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What if we don't do a hadronic Z recoil measurement and instead only
use o(ZH)-BR, to calculate o(ZH)-BR(visible) = Za(ZH)-BRi ?

IP':Z‘//i Wi:a)il_;éﬂi
. or') o 1
() =Z[TJ“’“ %0 L,

.2_i _i Si+ﬂi
(%) —inZ—inZ &

2
Compare this now with our formula for [%j for 4 =1:

(r]-spluazalfi2) 2]
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