Using the Hadronic Recoil Cross Section Measurement in Higgs Coupling Fits

Tim Barklow (SLAC) Sep 08, 2014 Mark Thomson's analysis of $\sigma(ZH)$ with $Z \rightarrow q\overline{q}$ uses two measurements to obtain the cross section: $\sigma(ZH) = \sigma(ZH) \cdot BR(visible) + \sigma(ZH) \cdot BR(invisible)$

σ (ZH)•BR(visible)					le)	σ (ZH)•BR(invisible)	
Final(?) Results					sults	BDT Selection	d
Process	σ/fb	$\varepsilon_{\rm presel}$	$\mathcal{E}_{\mathscr{L}>0.70}$	<i>N£</i> >0.70	★ For optimal cut	 Preliminary results (7 variable BDT selection) 	
qq qq]v qqqq qq]l qq]l qqvv Hv _e v _e	25180 5914 5847 1704 325	0.5 % 6.4 % 4.2 % 1.2 % 0.6 % - %	<0.1 % 0.1 % 0.4 % 0.1 % <0.1 %	6211 3895 10818 1218 35	 signal ~9.5k events background ~ 19k events 15 % improvement c.f. LCWS analysis 	$ \begin{array}{c} \underset{M}{\overset{\text{Signal}}}{\overset{Signal}}{\overset{Signal}}\overset{Signal}}{\overset{Signal}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	cy %
HZ	93.4	44.0%	20.3 %	9493		Efficiency Ev	ann
$H \rightarrow invis.$ $H \rightarrow q\overline{q}/gg$ $H \rightarrow WW^*$		0.6 % 43.5 % 44.7 %	<0.1 % 20.6 % 19.5 %	6211 2240	Efficiencies same to ~10 % !!!	0.4 -0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2	4 2414
$\begin{array}{l} H \rightarrow ZZ^{*} \\ H \rightarrow \tau^{+}\tau^{-} \\ H \rightarrow \gamma\gamma \\ H \rightarrow Z\gamma \\ H \rightarrow \mu^{+}\mu^{-} \end{array}$		40.0 % 47.6 % 42.8 % 41.8 % 39.5 %	18.1 % 21.4 % 22.1 % 17.6 % 20.6 %	254 738 32 17 3	almost model independent	*Assuming no invisible decays (1 sigma stat. error): $\Delta \sigma_{\rm invis} = \pm 0.57 \%$	
Mark Thomson	lark Thomson Fermilab, May 2014 24 (CLIC beam spectrum, 500 fb ⁻¹ @ 350 GeV, no polarisation)						

In order to use this cross section measurement in our Higgs analyses we have to quantify the penalty associated with the fact that $\sigma(ZH) \cdot BR(visible)$ is "almost model independent". By how much must we blow up $\Delta\sigma(ZH) \cdot BR(visible)$ to account for the fact that the efficiencies differ by 10% or more?

* Combining visible + invisible analysis: wanted M.I.

i.e. efficiency independent of Higgs decay mode

Decay mode	$\epsilon \epsilon_{\mathscr{L}>0.70}^{\mathrm{vis}}$	$arepsilon_{ m BDT>0.08}^{ m invis}$	$\varepsilon^{\rm vis} + \varepsilon^{\rm invis}$		
$H \rightarrow invis.$	<0.1 %	20.7 %	20.7 %	Γ	
$H \rightarrow q\overline{q}/gg$	20.6 %	<0.1 %	20.6 %		
$H \rightarrow WW^*$	19.5 %	<0.1 %	19.8%		
$H \rightarrow ZZ^*$	18.1 %	0.9 %	19.0%		Very similar
$H\to\tau^+\tau^-$	21.4 %	0.1 %	21.5 %	Γ	efficiencies
$H \rightarrow \gamma \gamma$	22.1 %	<0.1 %	22.1 %		
$H \rightarrow Z\gamma$	17.6%	<0.1 %	17.1 %		
$H \to \mu^+ \mu^-$	20.6 %	<0.1 %	20.6 %		
$H \rightarrow WW^* \rightarrow q$	<u> </u> qq <u>q</u> 19.3%	<0.1 %	19.3 %	٦	
$\mathrm{H} \rightarrow \mathrm{W}\mathrm{W}^* \rightarrow \mathrm{Q}$	[q]ν 19.6%	<0.1 %	19.6%		Look at wide
$\mathrm{H} \rightarrow \mathrm{W}\mathrm{W}^* \rightarrow \mathrm{q}$	[qτν 19.9%]	<0.1 %	19.9%		range of WW
$H \rightarrow WW^* \rightarrow I^*$	vlv 22.0%	0.3 %	22.3 %	Γ	tange of WW
$\mathrm{H} \rightarrow \mathrm{W}\mathrm{W}^* \rightarrow \mathrm{I}^*$	ντν 16.7 %	0.3 %	17.0%		topologies
$H \rightarrow WW^* \rightarrow \tau$	ντν 12.2 <i>%</i>	1.3 %	13.6%		
Mark Thomson		Fermilab, May	2014		

We have used an approach where we use all of our $\sigma \cdot BR$ measurements for visible Higgs decays to obtain an estimate of the average signal efficiency for $\sigma(ZH) \cdot BR(visible)$. It is then straightforward to propagate the $\sigma \cdot BR$ errors to the error on $\sigma(ZH) \cdot BR(visible)$, This means that one must take into account the correlation between the $\sigma \cdot BR$ measurements and our $\sigma(ZH)$ measurement from hadronic Z decays when we fit for couplings and total width. It also means that we must develop $\sigma \cdot BR$ analyses for all possible BSM Higgs decays Let

- $\Psi \equiv \sigma(ZH) \bullet BR(visible)$
- Ω = Number of signal + background events in σ (*ZH*)•*BR*(*visible*) analysis
- B = Predicted number of background events in $\sigma(ZH)$ •BR(visible) analysis
- Ξ = Average efficiency for signal events to pass $\sigma(ZH)$ •BR(visible) analysis L = luminosity

$$\Psi = \frac{\Omega - B}{L\Xi} = \frac{1}{\Xi} \sum_{i} \psi_i \xi_i = \sum_{i} \psi_i \quad \text{where}$$

 $\psi_i = \sigma(ZH) \cdot BR_i$

 $\xi_i = e$ fficiency for events from Higgs decay i to pass $\sigma(ZH) \cdot BR(visible)$ analysis

$$\Xi = \frac{\sum_{i} \psi_i \xi_i}{\sum_{i} \psi_i}$$

$$\psi_i = \frac{\omega_i - \beta_i}{L\eta_i}$$

 ω_i = Number of signal + background events in $\sigma(ZH) \cdot BR_i$ analysis β_i = Predicted number of background events in $\sigma(ZH) \cdot BR_i$ analysis η_i = efficiency for Higgs decay i to pass $\sigma \cdot BR_i$ analysis

 K_i = number of signal + background events common to had Z recoil and $\sigma \cdot BR_i$ analyses

E = number of signal + background events unique to had Z recoil analysis ε_i = number of signal + background events events unique to $\sigma \cdot BR_i$ analysis

$$\Omega = E + \sum_{i} K_{i} \qquad S \equiv \Omega - B \qquad T \equiv \frac{\sqrt{S + B}}{S}$$

$$\omega_{i} = K_{i} + \varepsilon_{i} \qquad S_{i} \equiv \omega_{i} - \beta_{i} \qquad \tau_{i} \equiv \frac{\sqrt{S_{i} + \beta_{i}}}{S_{i}}$$

$$\lambda_{i} \equiv \frac{K_{i}}{\omega_{i}} \qquad N \equiv L \sigma_{ZH} \qquad r_{i} \equiv BR_{i} \qquad \delta_{i} \equiv \xi_{i} - \Xi$$

$$\left(\frac{\Delta \Psi}{\Psi}\right)^{2} = T^{2} \left\{ 1 + \frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2} \tau_{i}^{2} \left[\delta_{i}^{2} - 2\lambda_{i} \eta_{i} \delta_{i} \right] \right\} \qquad \text{This is our result for the error on } \sigma(ZH) \cdot BR(visible)$$
given the approach outlined on page 22

But, if we are confident in our measurement of $\sigma(ZH) \cdot BR(H \rightarrow BSM)$, why don't we simply calculate $\sigma(ZH)$ using $\sum \sigma(ZH) \cdot BR_i$?

In fact this is what Michael Peskin does in his fits when he uses the constraint $\sum_{i} BR_{i} = 1$. If this constraint implicitly includes an hadronic recoil ZH cross section measurement, then the importance of the leptonic recoil ZH cross section measurement should diminish when this constraint is imposed. This indeed is the case, as demonstrated in the following slides where Higgs couplings are calculated for different values of a $\Delta \sigma_{ZH}$ scale factor.

EnergyDiff LumRun Time*Int Lumi250 GeV $0.75 \text{ cm}^{-2}\text{s}^{-1}$ 2.4 yr 280 fb^{1}

*No installation or ramp up; simply assume 50% eff. or 1.58×10^7 s per year.

$\Delta\sigma_{\rm ZH}$ scale	1	1	2	2	4	4	8	8
$\sum_{i} BR_{i} = 1?$	no	yes	no	yes	no	yes	no	yes
77	1 7%	0 74%	2 10/	0 87%	1 0%	0.01%	0.8%	0 03%
<u></u> ۱۸/+۱۸/-	1.Z/0	0.7470	Z.4 /0		4.370	0.9170		0.9570
VV VV	4.5%	4.4%	5.0%	4.4%	0.5%	4.4%	10.8%	4.4%
bb	4.9%	4.4%	5.4%	4.4%	6.8%	4.4%	10.9%	4.4%
cc	6.3%	5.9%	6.6%	5.9%	7.9%	6.0%	11.6%	6.0%
gg	5.8%	5.5%	6.2%	5.5%	7.5%	5.5%	11.3%	5.5%
$ au^+ au^-$	5.3%	4.8%	5.7%	4.9%	7.1%	4.9%	11.1%	4.9%
γγ	16.7%	16.6%	16.9%	16.6%	17.4%	16.6%	19.4%	16.6%
Γ_{τ}	10.8%	8.3%	13.7%	8.4%	21.8%	8.4%	40.3%	8.4%

Energy	Diff Lum	Run Time*	Int Lumi
250 GeV	$0.75 \text{ cm}^{-2} \text{s}^{-1}$	16.9 yr	2000 fb ¹
350 GeV	$0.75 \text{ cm}^{-2} \text{s}^{-1}$	1.3 yr	200 fb ¹
500 GeV	$0.75 \text{ cm}^{-2} \text{s}^{-1}$	10.6 yr	3000 fb ¹

*No installation or ramp up; simply assume 50% eff. or 1.58×10^7 s per year.

$\Delta\sigma_{\rm ZH}$ scale	1	1	2	2	4	4	8	8
$\sum_{i} BR_{i} = 1?$	no	yes	no	yes	no	yes	no	yes
77	0 440/	0.040/	0.040/	0.000/	4 00/	0.040/	2 20/	0.040/
	0.41%	0.21%	0.81%	0.23%	1.0%	0.24%	3.3%	0.24%
W^+W^-	0.46%	0.20%	0.85%	0.21%	1.7%	0.21%	3.3%	0.21%
bb	0.63%	0.39%	0.95%	0.39%	1.7%	0.39%	3.3%	0.39%
cc	1.1%	0.98%	1.3%	0.98%	1.9%	0.98%	3.4%	0.98%
gg	0.89%	0.77%	1.1%	0.78%	1.8%	0.78%	3.4%	0.78%
$ au^+ au^-$	0.88%	0.73%	1.1%	0.73%	1.8%	0.73%	3.4%	0.73%
γγ	3.0%	2.9%	3.1%	2.9%	3.4%	2.9%	4.4%	2.9%
Γ_{T}	2.0%	0.79%	3.5%	0.79%	6.6%	0.79%	13%	0.79%

It is clear from these results that $\sigma(ZH)$ is being calculated implicitly using $\sigma(ZH) = \sum_{i} \sigma(ZH) \cdot BR_{i}$ whenever the constraint $\sum_{i} BR_{i} = 1$ is imposed.

It appears that we have no need for a separate direct hadronic ZH recoil cross section measurement once we are confident that we have $\sigma(ZH) \cdot BR(H \rightarrow visible BSM)$ under control. In fact, it appears that we don't even need the classic leptonic ZH recoil cross section measurement in this case!

Caveats :

These results assume that the true $BR(H \rightarrow BSM)=0$ and that $BR(H \rightarrow \text{visible BSM})<0.9\%$ at 95% CL can be achieved with $\sqrt{s}=250 \text{ GeV} \& 250 \text{ fb}^{-1}$ or $\sqrt{s}=350 \text{ GeV} \& 500 \text{ fb}^{-1}$. (That is, it has been assumed that the same precision can be achieved for invisible decays and visible BSM decays.) This has yet to be demonstrated.

Also, we have to check how these conclusions are altered if the true $BR(H \rightarrow BSM)=1\%$, or 10%.

215 page "Exotic Decays of the 125 GeV Higgs Boson" arXiv:1312.4992 : Is this a starting point for a complete $\sigma \bullet BR(H \rightarrow BSM)$ analysis?

Contents

1. Introduction and Overview	7
1.1. General Motivation to Search for Exotic Higgs Decays	8
$1.2.$ Exotic Decay Modes of the $125~{\rm GeV}$ Higgs Boson	13
1.3. Theoretical Models for Exotic Higgs Decays	19
1.3.1. SM + Scalar	19
1.3.2. 2HDM (+ Scalar)	23
1.3.3. SM + Fermion	35
1.3.4. SM + 2 Fermions	39
1.3.5. SM + Vector	41
1.3.6. MSSM	49
1.3.7. NMSSM with exotic Higgs decay to scalars	51
1.3.8. NMSSM with exotic Higgs decay to fermions	53
1.3.9. Little Higgs	56
1.3.10. Hidden Valleys	57
2. $\mathbf{h} \rightarrow \not\!$	62
2.1. Theoretical Motivation	62
2.2. Existing Collider Studies	63
2.3. Existing Experimental Searches and Limits	64
3. $h \rightarrow 4b$	64
3.1. Theoretical Motivation	65
3.2. Existing Collider Studies	66
3.3. Existing Experimental Searches and Limits	67
3.4. Proposals for New Searches at the LHC	69
4. $h \rightarrow 2b2\tau$	70
4.1. Theoretical Motivation	70
4.2. Existing Collider Studies	70
4.3. Discussion of Future Searches at the LHC	71
5. $h \rightarrow 2b2\mu$	72

5.1. Theoretical Motivation	73
5.2. Existing Collider Studies and Experimental Searches	73
5.3. Proposals for New Searches at the LHC	74
6. h $ ightarrow 4 au, 2 au 2\mu$	79
6.1. Theoretical Motivation	79
6.2. Existing Collider Studies	82
6.3. Existing Experimental Searches and Limits	84
6.4. Proposals for New Searches at the LHC	90
7. $\mathbf{h} \rightarrow 4\mathbf{j}$	93
7.1. Theoretical Motivation	94
7.2. Existing Collider Studies	95
7.3. Existing Experimental Searches and Limits	96
8. h $ ightarrow 2\gamma 2 { m j}$	97
8.1. Theoretical Motivation	97
8.2. Existing Collider Studies	98
8.3. Existing Experimental Searches and Limits	100
8.4. Proposals for Future Searches	100
9. h $ ightarrow 4\gamma$	101
9.1. Theoretical Motivation	101
9.2. Existing Collider Studies	102
9.3. Existing Experimental Searches and Limits	105
9.4. Proposals for New Searches at the LHC	105
10. $h \rightarrow ZZ_D, Za \rightarrow 4\ell$	106
10.1. Theoretical Motivation	106
10.1.1. $h \to ZZ_D$	106
10.1.2. $h \rightarrow Za$	107
10.2. Existing Collider Studies	108
10.3. Existing Experimental Searches and Limits	108
10.4. Proposals for New Searches at the LHC	111

more Table of Contents from 215 page "Exotic Decays of the 125 GeV Higgs Boson" arXiv:1312.4992:

11. $h \rightarrow Z_D Z_D \rightarrow 4\ell$	112
11.1. Theoretical Motivation	112
11.2. Existing Collider Studies	113
11.3. Existing Experimental Searches and Limits	113
12. $\mathbf{h} ightarrow \boldsymbol{\gamma} + \mathbf{E}_{\mathbf{\Gamma}}$	118
12.1. Theoretical Motivations	118
12.2. Existing Collider Studies	119
12.3. Existing Experimental Searches and Limits	120
13. h $ ightarrow 2\gamma + ot \!$	122
13.1. Theoretical Motivation	123
13.1.1. Non-Resonant	123
13.1.2. Resonant	124
13.1.3. Cascade	125
13.2. Existing Experimental Searches and Limits	125
14. $h \rightarrow 4$ Isolated Leptons + $\not \!$	128
14.1. Theoretical Motivation	129
14.2. Existing Experimental Searches and Limits	130
15. $\mathbf{h} ightarrow 2\boldsymbol{\ell} + E_{\mathbf{T}}$	136
15.1. Theoretical Motivation	136
15.2. Existing Experimental Searches and Limits	137
16. h \rightarrow One Lepton-jet + X	140
16.1. Theoretical Motivation	141
16.1. Theoretical Motivation16.2. Existing Collider Studies	141 143
16.1. Theoretical Motivation16.2. Existing Collider Studies16.3. Existing Experimental Searches and Limits	141 143 144
16.1. Theoretical Motivation16.2. Existing Collider Studies16.3. Existing Experimental Searches and Limits16.4. Proposals for New Searches at the LHC	141 143 144 145
 16.1. Theoretical Motivation 16.2. Existing Collider Studies 16.3. Existing Experimental Searches and Limits 16.4. Proposals for New Searches at the LHC 17. h → Two Lepton-jets + X 	141 143 144 145 145
 16.1. Theoretical Motivation 16.2. Existing Collider Studies 16.3. Existing Experimental Searches and Limits 16.4. Proposals for New Searches at the LHC 17. h → Two Lepton-jets + X 17.1. Theoretical Motivation 	141 143 144 145 145 145

17.3. Existing Experimental Searches and Limits	147
18. $\mathbf{h} ightarrow \mathbf{b} \mathbf{ar{b}} + \mathbf{E}_{\mathbf{T}}$	149
18.1. Theoretical Motivation	150
18.2. Existing Collider Studies	151
18.3. Existing Experimental Searches and Limits	151
19. $\mathbf{h} ightarrow oldsymbol{ au}^+ oldsymbol{ au}^- + \mathbf{E}_{\mathbf{T}}$	152
19.1. Theoretical Motivation	152
19.2. Existing Collider Studies	153
19.3. Existing Experimental Searches and Limits	154
20. Conclusions & Outlook	154
20.1. How to interpret the tables	155
20.2. Final States Without $\not\!\!\!E_T$	156
20.2.1. $h \to aa \to \text{fermions}$	156
20.2.2. $h \to aa \to {\rm SM}$ gauge bosons	158
20.2.3. $h \to Z_D Z_D, Z Z_D, Z a$	159
20.3. Final States with $\not\!\!\!E_T$	162
20.3.1. Larger $\not\!\!\!E_T$, without resonances	164
20.3.2. Larger $\not\!\!\!E_T$, with resonances	166
20.3.3. Small $\not{\!\!E}_T$	170
20.3.4. Summary	171
20.4. Collimated objects in pairs	171
20.5. For further study	174
20.6. Summary of Suggestions	175
A. Decay Rate Computation for 2HDM+S Light Scalar and Pseudoscalar	179
A.1. Light Singlet Mass Above 1 GeV	180
A.2. Light Singlet Mass Below 1 GeV	183
B. Surveying Higgs phenomenology in the PQ-NMSSM	185
References	188

Questions

- What is the required precision on $\sigma \cdot BR(H \rightarrow BSM)$ if we want to impose the constraint $\sum_{i} BR_{i} = 1$?
- What is the required precision on σ BR(H → BSM) if want to use the direct hadronic recoil measurement of σ(ZH)?
- Do the 18 different σ BR(H → BSM_i) searches outlined in arXiv:1312.4992 cover all possible BSM decays? If not, what else is needed? And once we have answered that question, how do we prove that everything has indeed been covered?

Backup Slides

 $\Psi \equiv \sigma(ZH) \cdot BR(visible)$

- Ω = Number of signal + background events in σ (*ZH*)•*BR*(*visible*) analysis
- B = Predicted number of background events in $\sigma(ZH)$ •BR(visible) analysis
- Ξ = Average efficiency for signal events to pass $\sigma(ZH)$ •BR(visible) analysis L = luminosity

$$\Psi = \frac{\Omega - B}{L\Xi} = \frac{1}{\Xi} \sum_{i} \psi_i \xi_i = \sum_{i} \psi_i \quad \text{where}$$

 $\psi_i = \sigma(ZH) \cdot BR_i$

 $\xi_i = e$ fficiency for events from Higgs decay i to pass $\sigma(ZH) \cdot BR(visible)$ analysis

$$\Xi = \frac{\sum_{i} \psi_i \xi_i}{\sum_{i} \psi_i}$$

$$\psi_i = \frac{\omega_i - \beta_i}{L\eta_i}$$

 ω_i = Number of signal + background events in $\sigma(ZH) \cdot BR_i$ analysis β_i = Predicted number of background events in $\sigma(ZH) \cdot BR_i$ analysis η_i = efficiency for Higgs decay i to pass $\sigma \cdot BR_i$ analysis

K_i = number of signal + background events common to had Z recoil and $\sigma \cdot BR_i$ analyses

E = number of signal + background events unique to had Z recoil analysis ε_i = number of signal + background events events unique to $\sigma \cdot BR_i$ analysis

$$\Omega = E + \sum_{i} K_{i} \qquad S \equiv \Omega - B \qquad T \equiv \frac{\sqrt{S + B}}{S}$$
$$\omega_{i} = K_{i} + \varepsilon_{i} \qquad S_{i} \equiv \omega_{i} - \beta_{i} \qquad \tau_{i} \equiv \frac{\sqrt{S_{i} + \beta_{i}}}{S_{i}}$$

 $\lambda_{i} \equiv \frac{K_{i}}{\omega_{i}} \qquad \qquad N \equiv L \sigma_{ZH} \qquad r_{i} \equiv BR_{i} \qquad \delta_{i} \equiv \xi_{i} - \Xi$

$$(\Delta \Psi)^{2} = \left(\frac{\partial \Psi}{\partial \Omega}\right)^{2} V_{\Omega\Omega} + \left(\frac{\partial \Psi}{\partial \Xi}\right)^{2} V_{\Xi} + 2\frac{\partial \Psi}{\partial \Omega}\frac{\partial \Psi}{\partial \Xi} V_{\Omega\Xi}$$
$$\frac{\partial \Psi}{\partial \Omega} = \frac{1}{L\Xi} = \frac{\Psi}{\Omega} \left(1 - \frac{B}{\Omega}\right)^{-1} \qquad \qquad \frac{\partial \Psi}{\partial \Xi} = -\frac{\Omega - B}{L\Xi^{2}} = -\frac{\Psi}{\Xi}$$

$$V_{\Omega\Omega} = E + \sum_{i} K_{i} = \Omega$$
$$V_{\Xi\Xi} = \frac{1}{L^{2} \Psi^{2}} \sum_{i} \frac{(\xi_{i} - \Xi)^{2}}{(\eta_{i})^{2}} (\varepsilon_{i} + K_{i})$$
$$V_{\Omega\Xi} = \frac{1}{L \Psi} \sum_{i} \frac{\xi_{i} - \Xi}{\eta_{i}} K_{i}$$

$$\begin{split} \left(\frac{\Delta\Psi}{\Psi}\right)^2 &= \frac{1}{\Omega^2} \left(1 - \frac{B}{\Omega}\right)^{-2} V_{\alpha\alpha} + \frac{1}{\Xi^2} V_{\Xi\Xi} - \frac{2}{\Omega\Xi} \left(1 - \frac{B}{\Omega}\right)^{-1} V_{\alpha\Xi} \\ &= \frac{1}{\Omega} \left(1 - \frac{B}{\Omega}\right)^{-2} + \frac{1}{L^2 \Xi^2 \Psi^2} \sum_i \frac{(\xi_i - \Xi)^2}{(\eta_i)^2} (\varepsilon_i + K_i) - \frac{2}{L\Omega\Xi\Psi} \left(1 - \frac{B}{\Omega}\right)^{-1} \sum_i \frac{\xi_i - \Xi}{\eta_i} K_i \\ &= \frac{1}{\Omega} \left(1 - \frac{B}{\Omega}\right)^{-2} + \frac{1}{L^2 \Xi^2 \Psi^2} \sum_i \frac{(\xi_i - \Xi)^2}{(\eta_i)^2} (L\eta_i \psi_i + \beta_i) - \frac{2}{L\Omega\Xi\Psi} \left(1 - \frac{B}{\Omega}\right)^{-1} \sum_i \frac{\xi_i - \Xi}{\eta_i} \lambda_i (L\eta_i \psi_i + \beta_i) \\ &= \frac{1}{\Omega} \left(1 - \frac{B}{\Omega}\right)^{-2} \left[1 + \frac{L}{\Omega} \sum_i \frac{(\xi_i - \Xi)^2}{\eta_i} \psi_i \left(1 + \frac{\beta_i}{s_i}\right) - \frac{2L}{\Omega} \sum_i (\xi_i - \Xi) \psi_i \lambda_i \left(1 + \frac{\beta_i}{s_i}\right)\right] \\ &= \frac{S + B}{S^2} \left\{1 + \frac{L}{\Omega} \sum_i (\xi_i - \Xi) \psi_i \left(\frac{s_i + \beta_i}{s_i^2}\right) \left[(\xi_i - \Xi) L\psi_i - 2\lambda_i s_i\right]\right\} \end{split}$$

$$= \mathrm{T}^{2} \left\{ 1 + \frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2} \tau_{i}^{2} \left[\delta_{i}^{2} - 2\lambda_{i} \eta_{i} \delta_{i} \right] \right\}$$

What if we don't do a hadronic Z recoil measurement and instead only use $\sigma(ZH) \cdot BR_i$ to calculate $\sigma(ZH) \cdot BR(visible) = \sum_i \sigma(ZH) \cdot BR_i$?

$$\Psi' = \sum_{i} \psi_{i} \qquad \qquad \psi_{i} = \frac{\omega_{i} - \beta_{i}}{L \xi_{i}}$$
$$(\Delta \Psi')^{2} = \sum_{i} \left(\frac{\partial \Psi'}{\partial \omega_{i}}\right)^{2} \omega_{i} , \qquad \frac{\partial \Psi'}{\partial \omega_{i}} = \frac{1}{L \eta'_{i}}$$
$$(\Delta \Psi')^{2} = \frac{1}{L^{2}} \sum_{i} = \frac{1}{L^{2}} \sum_{i} \frac{s_{i} + \beta_{i}}{\xi_{i}^{2}}$$

$$\left(\frac{\Delta \Psi'}{\Psi'}\right)^2 = \left(\sum_i \frac{\omega_i - \beta_i}{L\xi_i}\right)^{-2} \frac{1}{L^2} \sum_i \frac{s_i + \beta_i}{\xi_i^2}$$
$$= \frac{S + B}{S^2} \frac{L}{\Omega} \Xi^2 \sum_i \frac{\psi_i}{\xi_i} \left(1 + \frac{\beta_i}{s_i}\right)$$

Compare this now with our formula for $\left(\frac{\Delta\Psi}{\Psi}\right)^2$ for $\lambda_i = 1$:

$$\left(\frac{\Delta\Psi}{\Psi}\right)^{2} = \frac{S+B}{S^{2}} \left\{ 1 + \frac{1}{\Omega} \sum_{i} \omega_{i} \left[\left(1 - \frac{\Xi}{\xi_{i}}\right)^{2} - 2\left(1 - \frac{\Xi}{\xi_{i}}\right) \right] \right\}$$
$$= \frac{S+B}{S^{2}} \left\{ 1 + \frac{1}{\Omega} \sum_{i} \omega_{i} \left[1 - \frac{2\Xi}{\xi_{i}} + \left(\frac{\Xi}{\xi_{i}}\right)^{2} - 2 + 2\frac{\Xi}{\xi_{i}} \right] \right\} = \left(\frac{\Delta\Psi'}{\Psi'}\right)^{2}$$