Using the Hadronic Recoil Cross Section Measurement in Higgs
 Coupling Fits

Tim Barklow (SLAC)
Sep 08, 2014

Mark Thomson's analysis of $\sigma(Z H)$ with $Z \rightarrow q \bar{q}$ uses two measurements to obtain the cross section:

 $\sigma(Z H)=\sigma(Z H) \cdot B R($ visible $)+\sigma(Z H) \cdot B R($ invisible $)$$\sigma(Z H) \cdot B R($ visible $)$
Final(?) Results

Process	σ / fb	$\varepsilon_{\text {presel }}$	$\varepsilon_{\mathscr{L}>0.70}$	$N_{\mathscr{L}>0.70}$	
$q \bar{q}$	25180	0.5\%	<0.1\%	6211	- signal ~9.5k events
$q \bar{q} 1 v$	5914	6.4\%	0.1\%	3895	- background $\sim 19 \mathrm{k}$ events
q $\bar{q} q \bar{q}$	5847	4.2\%	0.4\%	10818	
q $\bar{q} 11$	1704	1.2\%	0.1\%	1218	
$q \bar{q} v \bar{v}$	325	0.6\%	<0.1\%	35	c.f. LCWS analysis
$\mathrm{Hv}_{\mathrm{e}} \overline{\mathrm{v}}_{\mathrm{e}}$		- \%			
HZ	93.4	44.0\%	20.3\%	9493	
$\mathrm{H} \rightarrow$ invis.		0.6\%	<0.1\%	-	
$\mathrm{H} \rightarrow \mathrm{q} \overline{\mathrm{q}} / \mathrm{gg}$		43.5\%	20.6\%	6211	Efficiencies same
$\mathrm{H} \rightarrow \mathrm{WW}^{*}$		44.7\%	19.5\%	2240	to ~10 \% !!!
$\mathrm{H} \rightarrow \mathrm{ZZ}^{*}$		40.0\%	18.1\%	254	
$\mathrm{H} \rightarrow \tau^{+} \tau^{-}$		47.6\%	21.4\%	738	
$\mathrm{H} \rightarrow \gamma \gamma$		42.8\%	22.1\%	32	\square aimost model
$\mathrm{H} \rightarrow \mathrm{Z} \gamma$		41.8\%	17.6\%	17	\checkmark independent
$\mathrm{H} \rightarrow \mu^{+} \mu^{-}$		39.5\%	20.6\%	3	

$\sigma(Z H) \cdot B R($ invisible) BDT Selection

ћ Assuming no invisible decays (1 sigma stat. error):

$$
\Rightarrow \Delta \sigma_{\mathrm{invis}}= \pm 0.57 \%
$$

(CLIC beam spectrum, $500 \mathrm{fb}^{-1} @ 350 \mathrm{GeV}$, no polarisation)

In order to use this cross section measurement in our Higgs analyses we have to quantify the penalty associated with the fact that
$\sigma(Z H) \cdot B R(v i s i b l e)$ is "almost model independent". By how much must we blow up $\Delta \sigma(Z H) \cdot B R($ visible) to account for the fact that the efficiencies differ by 10% or more?

Model Indepedence

* Combining visible + invisible analysis: wanted M.I.
- i.e. efficiency independent of Higgs decay mode

Decay mode	$\varepsilon_{\mathscr{L}>0.70}^{\text {vis }}$	$\varepsilon_{\text {BDT }}^{\text {invis }}$ i ${ }_{\text {d }}$	$\varepsilon^{\text {vis }}+\varepsilon^{\text {invis }}$	
$\mathrm{H} \rightarrow$ invis.	<0.1\%	20.7 \%	20.7 \%	
$\mathrm{H} \rightarrow \mathrm{q} \overline{\mathrm{q}} / \mathrm{gg}$	20.6\%	<0.1\%	20.6\%	
$\mathrm{H} \rightarrow \mathrm{WW}^{*}$	19.5 \%	<0.1\%	19.8\%	
$\mathrm{H} \rightarrow \mathrm{ZZ}^{*}$	18.1\%	0.9 \%	19.0\%	Very similar
$\mathrm{H} \rightarrow \tau^{+} \tau^{-}$	21.4\%	0.1 \%	21.5 \%	efficiencies
$\mathrm{H} \rightarrow \gamma \gamma$	22.1 \%	<0.1\%	22.1 \%	
$\mathrm{H} \rightarrow \mathrm{Z} \gamma$	17.6\%	<0.1\%	17.1 \%	
$\mathrm{H} \rightarrow \mu^{+} \mu^{-}$	20.6\%	<0.1\%	20.6\%	
$\mathrm{H} \rightarrow \mathrm{WW}^{*} \rightarrow \mathrm{q} \overline{\mathrm{q}} \mathrm{q} \overline{\mathrm{q}}$	19.3\%	<0.1\%	19.3 \%	
$\mathrm{H} \rightarrow \mathrm{WW}^{*} \rightarrow \mathrm{q} \overline{\mathrm{q}} \mathrm{lv}$	19.6\%	<0.1\%	19.6\%	Look at wide
$\mathrm{H} \rightarrow \mathrm{WW}^{*} \rightarrow \mathrm{q} \overline{\mathrm{q}} \tau \nu$	19.9 \%	<0.1\%	19.9\%	range of WW
$\mathrm{H} \rightarrow \mathrm{WW}^{*} \rightarrow \mathrm{lvlv}$	22.0\%	0.3%	22.3 \%	topologies
$\mathrm{H} \rightarrow \mathrm{WW}^{*} \rightarrow \mathrm{lv} \tau \nu$	16.7 \%	0.3%	17.0\%	topologies
$\mathrm{H} \rightarrow \mathrm{WW}^{*} \rightarrow \tau \nu \tau \nu$	12.2\%	1.3 \%	13.6\%	

We have used an approach where we use all of our $\sigma \cdot B R$ measurements for visible Higgs decays to obtain an estimate of the average signal efficiency for $\sigma(\mathrm{ZH}) \cdot B R$ (visible). It is then straightforward to propagate the $\sigma \cdot B R$ errors to the error on $\sigma(Z H) \cdot B R($ visible), This means that one must take into account the correlation between the $\sigma \cdot B R$ measurements and our $\sigma(Z H)$ measurement from hadronic Z decays when we fit for couplings and total width. It also means that we must develop $\sigma \cdot B R$ analyses for all possible BSM Higgs decays
$\Psi \equiv \sigma(Z H) \cdot B R$ (visible)
$\Omega=$ Number of signal + background events in $\sigma(Z H) \cdot B R($ visible $)$ analysis
$B=$ Predicted number of background events in $\sigma(Z H) \cdot B R($ visible) analysis
$\Xi=$ Average efficiency for signal events to pass $\sigma(Z H) \cdot B R($ visible $)$ analysis
$L=$ luminosity
$\Psi=\frac{\Omega-\mathrm{B}}{L \Xi}=\frac{1}{\Xi} \sum_{i} \psi_{i} \xi_{i}=\sum_{i} \psi_{i} \quad$ where
$\psi_{i}=\sigma(Z H) \cdot B R_{i}$
$\xi_{i}=$ efficiency for events from Higgs decay i to pass $\sigma(Z H) \cdot B R($ visible) analysis
$\Xi=\frac{\sum_{i} \psi_{i} \xi_{i}}{\sum_{i} \psi_{i}}$
$\psi_{i}=\frac{\omega_{i}-\beta_{i}}{L \eta_{i}}$
$\omega_{i}=$ Number of signal + background events in $\sigma(Z H) \cdot B R_{i}$ analysis
$\beta_{i}=$ Predicted number of background events in $\sigma(Z H) \cdot B R_{i}$ analysis
$\eta_{i}=$ efficiency for Higgs decay i to pass $\sigma \cdot B R_{i}$ analysis
$K_{i}=$ number of signal + background events common to had Z recoil and $\sigma \cdot B R_{i}$ analyses
$\mathrm{E}=$ number of signal + background events unique to had Z recoil analysis
$\varepsilon_{i}=$ number of signal + background events events unique to $\sigma \bullet B R_{i}$ analysis
$\Omega=\mathrm{E}+\sum_{i} \mathrm{~K}_{i} \quad \mathrm{~S} \equiv \Omega-\mathrm{B} \quad \mathrm{T} \equiv \frac{\sqrt{S+\mathrm{B}}}{\mathrm{S}}$
$\omega_{i}=\mathrm{K}_{i}+\varepsilon_{i} \quad s_{i} \equiv \omega_{i}-\beta_{i} \quad \tau_{i} \equiv \frac{\sqrt{\mathrm{~s}_{i}+\beta_{i}}}{\mathrm{~s}_{i}}$
$\lambda_{i} \equiv \frac{\mathrm{~K}_{i}}{\omega_{i}} \quad N \equiv L \sigma_{z H} \quad r_{i} \equiv B R_{i} \quad \delta_{i} \equiv \xi_{i}-\Xi$
$\left(\frac{\Delta \Psi}{\Psi}\right)^{2}=\mathrm{T}^{2}\left\{1+\frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2} \tau_{i}^{2}\left[\delta_{i}^{2}-2 \lambda_{i} \eta_{i} \delta_{i}\right]\right\} \quad \begin{aligned} & \text { This is our result for the error on } \sigma(Z H) \cdot B R \text { (visible) } \\ & \text { given the approach outlined on page } 22\end{aligned}$

But, if we are confident in our measurement of $\sigma(Z H) \cdot B R(H \rightarrow B S M)$, why don't we simply calculate $\sigma(Z H)$ using $\sum_{i} \sigma(Z H) \cdot B R_{i} \quad$?

In fact this is what Michael Peskin does in his fits when he uses the constraint $\sum_{i} B R_{i}=1$. If this constraint implicitly includes an hadronic recoil ZH cross section measurement, then the importance of the leptonic recoil ZH cross section measurement should diminish when this constraint is imposed. This indeed is the case, as demonstrated in the following slides where Higgs couplings are calculated for different values of a $\Delta \sigma_{z H}$ scale factor.

Energy Diff Lum Run Time* Int Lumi
 $250 \mathrm{GeV} \quad 0.75 \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \quad 2.4 \mathrm{yr} \quad 280 \mathrm{fb}^{1}$

*No installation or ramp up; simply assume 50% eff. or 1.58×10^{7} s per year.

$\Delta \sigma_{z H}$ scale	1	1	2	2	4	4	8	8
$\sum_{i} B R_{i}=1 ?$	no	yes	no	yes	no no	yes	no	yes

Energy	Diff Lum	Run Time*	Int Lumi
250 GeV	$0.75 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	16.9 yr	$2000 \mathrm{fb}^{1}$
350 GeV	$0.75 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	1.3 yr	$200 \mathrm{fb}^{1}$
500 GeV	$0.75 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	10.6 yr	$3000 \mathrm{fb}^{1}$

*No installation or ramp up; simply assume 50% eff. or 1.58×10^{7} s per year.

$\Delta \sigma_{z H}$ scale	1	1	2	2	4	4	8	8
$\sum_{i} B R_{i}=1 ?$	no	yes	no	yes	no	yes	no	yes

$Z Z$	0.41%	0.21%	0.81%	0.23%	1.6%	0.24%	3.3%	0.24%
$W^{+} W^{-}$	0.46%	0.20%	0.85%	0.21%	1.7%	0.21%	3.3%	0.21%
$b \bar{b}$	0.63%	0.39%	0.95%	0.39%	1.7%	0.39%	3.3%	0.39%
$c \bar{c}$	1.1%	0.98%	1.3%	0.98%	1.9%	0.98%	3.4%	0.98%
$g g$	0.89%	0.77%	1.1%	0.78%	1.8%	0.78%	3.4%	0.78%
$\tau^{+} \tau^{-}$	0.88%	0.73%	1.1%	0.73%	1.8%	0.73%	3.4%	0.73%
$\gamma \gamma$	3.0%	2.9%	3.1%	2.9%	3.4%	2.9%	4.4%	2.9%
Γ_{T}	2.0%	0.79%	3.5%	0.79%	6.6%	0.79%	13%	0.79%

It is clear from these results that $\sigma(\mathrm{ZH})$ is being calculated implictly using $\sigma(Z H)=\sum_{i} \sigma(Z H) \cdot B R_{i}$
whenever the constraint $\sum_{i} B R_{i}=1$ is imposed.

It appears that we have no need for a separate direct hadronic ZH recoil cross section measurement once we are confident that we have $\sigma(Z H) \cdot B R(H \rightarrow$ visible $B S M)$ under control. In fact, it appears that we don't even need the classic leptonic ZH recoil cross section measurement in this case!

Caveats:

These results assume that the true $B R(H \rightarrow B S M)=0$ and that $B R(H \rightarrow$ visible BSM $)<0.9 \%$ at 95% CL can be achieved with $\sqrt{s}=250 \mathrm{GeV} \& 250 \mathrm{fb}^{-1}$ or $\sqrt{s}=350 \mathrm{GeV} \& 500 \mathrm{fb}^{-1}$. (That is, it has been assumed that the same precision can be achieved for invisible decays and visible BSM decays.)
This has yet to be demonstrated.

Also, we have to check how these conclusions are altered if the true $B R(H \rightarrow B S M)=1 \%$, or 10%.

215 page "Exotic Decays of the 125 GeV Higgs Boson" arXiv:1312.4992: Is this a starting point for a complete $\sigma \bullet \mathrm{BR}(H \rightarrow B S M)$ analysis?

Contents

1. Introduction and Overview 7
1.1. General Motivation to Search for Exotic Higgs Decays 8
1.2. Exotic Decay Modes of the 125 GeV Higgs Boson 13
1.3. Theoretical Models for Exotic Higgs Decays 19
1.3.1. $\mathrm{SM}+$ Scalar 19
1.3.2. 2HDM (+ Scalar) 23
1.3.3. $\mathrm{SM}+$ Fermion 35
1.3.4. $\mathrm{SM}+2$ Fermions 39
1.3.5. SM + Vector 41
1.3.6. MSSM 49
1.3.7. NMSSM with exotic Higgs decay to scalars 51
1.3.8. NMSSM with exotic Higgs decay to fermions 53
1.3.9. Little Higgs 56
1.3.10. Hidden Valleys 57
2. $\mathrm{h} \rightarrow \mathrm{E}_{\mathrm{T}}$ 62
2.1. Theoretical Motivation 62
2.2. Existing Collider Studies 63
2.3. Existing Experimental Searches and Limits 64
3. $\mathrm{h} \rightarrow 4 \mathrm{~b}$ 64
3.1. Theoretical Motivation 65
3.2. Existing Collider Studies 66
3.3. Existing Experimental Searches and Limits 67
3.4. Proposals for New Searches at the LHC 69
4. $\mathrm{h} \rightarrow 2 \mathrm{~b} 2 \tau$ 70
4.1. Theoretical Motivation 70
4.2. Existing Collider Studies 70
4.3. Discussion of Future Searches at the LHC 71
5. $\mathrm{h} \rightarrow 2 \mathrm{~b} 2 \mu$ 72
5.1. Theoretical Motivation 73
5.2. Existing Collider Studies and Experimental Searches 73
5.3. Proposals for New Searches at the LHC 74
6. $\mathrm{h} \rightarrow 4 \tau, 2 \tau 2 \mu$ 79
6.1. Theoretical Motivation 79
6.2. Existing Collider Studies 82
6.3. Existing Experimental Searches and Limits 84
6.4. Proposals for New Searches at the LHC 90
7. $\mathrm{h} \rightarrow 4 \mathrm{j}$ 93
7.1. Theoretical Motivation 94
7.2. Existing Collider Studies 95
7.3. Existing Experimental Searches and Limits 96
8. $h \rightarrow 2 \gamma 2 \mathrm{j}$ 97
8.1. Theoretical Motivation 97
8.2. Existing Collider Studies 98
8.3. Existing Experimental Searches and Limits 100
8.4. Proposals for Future Searches 100
9. $\mathrm{h} \rightarrow 4 \gamma$ 101
9.1. Theoretical Motivation 101
9.2. Existing Collider Studies 102
9.3. Existing Experimental Searches and Limits 105
9.4. Proposals for New Searches at the LHC 105
10. $\mathrm{h} \rightarrow \mathrm{ZZ}, \mathrm{Za} \rightarrow 4 \ell$ 106
10.1. Theoretical Motivation 106
10.1.1. $h \rightarrow Z Z_{D}$ 106
10.1.2. $h \rightarrow Z a$ 107
10.2. Existing Collider Studies 108
10.3. Existing Experimental Searches and Limits 108
10.4. Proposals for New Searches at the LHC 111
11. $\mathrm{h} \rightarrow \mathrm{Z}_{\mathrm{D}} \mathrm{Z}_{\mathrm{D}} \rightarrow 4 \ell$ 112
12. Theoretical Motivation 112
11.2. Existing Collider Studies 113
11.3. Existing Experimental Searches and Limits 113
13. $\mathrm{h} \rightarrow \boldsymbol{\gamma}+\mathrm{E}_{\mathrm{T}}$ 118
12.1. Theoretical Motivations 118
12.2. Existing Collider Studies 119
12.3. Existing Experimental Searches and Limits 120
14. $\mathrm{h} \rightarrow 2 \gamma+\mathrm{E}_{\mathrm{T}}$ 122
13.1. Theoretical Motivation 123
13.1.1. Non-Resonant 123
13.1.2. Resonant 124
13.1.3. Cascade 125
13.2. Existing Experimental Searches and Limits 125
15. $\mathrm{h} \rightarrow 4$ Isolated Leptons $+\mathrm{Fr}_{\mathrm{I}}$ 128
14.1. Theoretical Motivation 129
14.2. Existing Experimental Searches and Limits 130
16. $\mathrm{h} \rightarrow 2 \ell+\mathrm{E}_{\mathrm{T}}$ 136
15.1. Theoretical Motivation 136
15.2. Existing Experimental Searches and Limits 137
17. $\mathrm{h} \rightarrow$ One Lepton-jet +X 140
16.1. Theoretical Motivation 141
16.2. Existing Collider Studies 143
16.3. Existing Experimental Searches and Limits 144
16.4. Proposals for New Searches at the LHC 145
18. $\mathrm{h} \rightarrow$ Two Lepton-jets +X 145
17.1. Theoretical Motivation 145
17.2. Existing Collider Studies 147
17.3. Existing Experimental Searches and Limits 147
19. $\mathrm{h} \rightarrow \mathrm{b} \overline{\mathrm{b}}+\mathrm{E}_{\mathrm{T}}$ 149
18.1. Theoretical Motivation 150
18.2. Existing Collider Studies 151
18.3. Existing Experimental Searches and Limits 151
20. $\mathbf{h} \rightarrow \boldsymbol{\tau}^{+} \boldsymbol{\tau}^{-}+\mathbf{E}_{\mathrm{T}}$ 152
19.1. Theoretical Motivation 152
19.2. Existing Collider Studies 153
19.3. Existing Experimental Searches and Limits 154
21. Conclusions \& Outlook 154
20.1. How to interpret the tables 155
20.2. Final States Without F_{T} 156
20.2.1. $h \rightarrow a a \rightarrow$ fermions 156
20.2.2. $h \rightarrow a a \rightarrow$ SM gauge bosons 158
20.2.3. $h \rightarrow Z_{D} Z_{D}, Z Z_{D}, Z a$ 159
20.3. Final States with F_{T} 162
20.3.1. Larger \dot{B}_{T}, without resonances 164
20.3.2. Larger \dot{E}_{T}, with resonances 166
20.3.3. Small H_{T} 170
20.3.4. Summary 171
20.4. Collimated objects in pairs 171
20.5. For further study 174
20.6. Summary of Suggestions 175
A. Decay Rate Computation for $2 \mathrm{HDM}+\mathrm{S}$ Light Scalar and Pseudoscalar 179
A.1. Light Singlet Mass Above 1 GeV 180
A.2. Light Singlet Mass Below 1 GeV 183
B. Surveying Higgs phenomenology in the PQ-NMSSM 185
References 188

Questions

- What is the required precision on $\sigma \cdot B R(H \rightarrow B S M)$ if we want to impose the constraint $\sum_{i} B R_{i}=1$?
- What is the required precision on $\sigma \cdot B R(H \rightarrow B S M)$ if want to use the direct hadronic recoil measurement of $\sigma(Z H)$?
- Do the 18 different $\sigma \cdot B R\left(H \rightarrow B S M_{i}\right)$ searches outlined in arXiv:1312.4992 cover all possible BSM decays? If not, what else is needed? And once we have answered that question, how do we prove that everything has indeed been covered?

Backup Slides

$$
\Psi \equiv \sigma(Z H) \cdot B R(\text { visible })
$$

$\Omega=$ Number of signal + background events in $\sigma(Z H) \cdot B R($ visible $)$ analysis
$\mathrm{B}=$ Predicted number of background events in $\sigma(Z H) \cdot B R($ visible) analysis
$\Xi=$ Average efficiency for signal events to pass $\sigma(Z H) \cdot B R($ visible) analysis
$L=$ luminosity
$\Psi=\frac{\Omega-\mathrm{B}}{L \Xi}=\frac{1}{\Xi} \sum_{i} \psi_{i} \xi_{i}=\sum_{i} \psi_{i} \quad$ where
$\psi_{i}=\sigma(Z H) \cdot B R_{i}$
$\xi_{i}=$ efficiency for events from Higgs decay i to pass $\sigma(Z H) \cdot B R($ visible) analysis
$\Xi=\frac{\sum_{i} \psi_{i} \xi_{i}}{\sum_{i} \psi_{i}}$
$\psi_{i}=\frac{\omega_{i}-\beta_{i}}{L \eta_{i}}$
$\omega_{i}=$ Number of signal + background events in $\sigma(Z H) \cdot B R_{i}$ analysis
$\beta_{i}=$ Predicted number of background events in $\sigma(Z H) \cdot B R_{i}$ analysis
$\eta_{i}=$ efficiency for Higgs decay i to pass $\sigma \bullet B R_{i}$ analysis
$K_{i}=$ number of signal + background events common to had Z recoil and $\sigma \cdot B R_{i}$ analyses
$\mathrm{E}=$ number of signal + background events unique to had Z recoil analysis
$\varepsilon_{i}=$ number of signal + background events events unique to $\sigma \cdot B R_{i}$ analysis

$$
\begin{array}{lll}
\Omega=\mathrm{E}+\sum_{i} \mathrm{~K}_{i} & \mathrm{~S} \equiv \Omega-\mathrm{B} & \mathrm{~T} \equiv \frac{\sqrt{\mathrm{~S}+\mathrm{B}}}{\mathrm{~S}} \\
\omega_{i}=\mathrm{K}_{i}+\varepsilon_{i} & \mathrm{~s}_{i} \equiv \omega_{i}-\beta_{i} & \tau_{i} \equiv \frac{\sqrt{\mathrm{~S}_{i}+\beta_{i}}}{\mathrm{~s}_{i}} \\
\lambda_{i} \equiv \frac{\mathrm{~K}_{i}}{\omega_{i}} & N \equiv L \sigma_{z H} & r_{i} \equiv B R_{i}
\end{array} \delta_{i} \equiv \xi_{i}-\Xi
$$

$$
\begin{aligned}
& (\Delta \Psi)^{2}=\left(\frac{\partial \Psi}{\partial \Omega}\right)^{2} V_{\Omega \Omega}+\left(\frac{\partial \Psi}{\partial \Xi}\right)^{2} V_{\Xi \Xi}+2 \frac{\partial \Psi}{\partial \Omega} \frac{\partial \Psi}{\partial \Xi} V_{\Omega \Xi} \\
& \frac{\partial \Psi}{\partial \Omega}=\frac{1}{L \Xi}=\frac{\Psi}{\Omega}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-1} \quad \frac{\partial \Psi}{\partial \Xi}=-\frac{\Omega-\mathrm{B}}{L \Xi^{2}}=-\frac{\Psi}{\Xi} \\
& V_{\Omega \Omega}=\mathrm{E}+\sum_{i} \mathrm{~K}_{i}=\Omega \\
& V_{\Xi \Xi}=\frac{1}{L^{2} \Psi^{2}} \sum_{i} \frac{\left(\xi_{i}-\Xi\right)^{2}}{\left(\eta_{i}\right)^{2}}\left(\varepsilon_{i}+\mathrm{K}_{i}\right) \\
& V_{\Omega \Xi}=\frac{1}{L \Psi} \sum_{i} \frac{\xi_{i}-\Xi}{\eta_{i}} \mathrm{~K}_{i}
\end{aligned}
$$

$$
\begin{aligned}
\left(\frac{\Delta \Psi}{\Psi}\right)^{2} & =\frac{1}{\Omega^{2}}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-2} V_{\Omega \Omega}+\frac{1}{\Xi^{2}} V_{\Xi \Xi}-\frac{2}{\Omega \Xi}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-1} V_{\Omega \Xi} \\
& =\frac{1}{\Omega}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-2}+\frac{1}{L^{2} \Xi^{2} \Psi^{2}} \sum_{i} \frac{\left(\xi_{i}-\Xi\right)^{2}}{\left(\eta_{i}\right)^{2}}\left(\varepsilon_{i}+\mathrm{K}_{i}\right)-\frac{2}{L \Omega \Xi \Psi}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-1} \sum_{i} \frac{\xi_{i}-\Xi}{\eta_{i}} \mathrm{~K}_{i} \\
& =\frac{1}{\Omega}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-2}+\frac{1}{L^{2} \Xi^{2} \Psi^{2}} \sum_{i} \frac{\left(\xi_{i}-\Xi\right)^{2}}{\left(\eta_{i}\right)^{2}}\left(L \eta_{i} \psi_{i}+\beta_{i}\right)-\frac{2}{L \Omega \Xi \Psi}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-1} \sum_{i} \frac{\xi_{i}-\Xi}{\eta_{i}} \lambda_{i}\left(L \eta_{i} \psi_{i}+\beta_{i}\right) \\
& =\frac{1}{\Omega}\left(1-\frac{\mathrm{B}}{\Omega}\right)^{-2}\left[1+\frac{L}{\Omega} \sum_{i} \frac{\left(\xi_{i}-\Xi\right)^{2}}{\eta_{i}} \psi_{i}\left(1+\frac{\beta_{i}}{\mathrm{~S}_{i}}\right)-\frac{2 L}{\Omega} \sum_{i}\left(\xi_{i}-\Xi\right) \psi_{i} \lambda_{i}\left(1+\frac{\beta_{i}}{S_{i}}\right)\right] \\
& =\frac{S+\mathrm{B}}{S^{2}}\left\{1+\frac{L}{\Omega} \sum_{i}\left(\xi_{i}-\Xi\right) \psi_{i}\left(\frac{s_{i}+\beta_{i}}{s_{i}^{2}}\right)\left[\left(\xi_{i}-\Xi\right) L \psi_{i}-2 \lambda_{i} s_{i}\right]\right\} \\
& =\mathrm{T}^{2}\left\{1+\frac{N^{2}}{\Omega} \sum_{i} r_{i}^{2} \tau_{i}^{2}\left[\delta_{i}^{2}-2 \lambda_{i} \eta_{i} \delta_{i}\right]\right\}
\end{aligned}
$$

What if we don't do a hadronic Z recoil measurement and instead only use $\sigma(Z H) \cdot B R_{i}$ to calculate $\sigma(Z H) \cdot B R($ visible $)=\sum_{i} \sigma(Z H) \cdot B R_{i}$?

$$
\begin{aligned}
& \Psi^{\prime}=\sum_{i} \psi_{i} \quad \psi_{i}=\frac{\omega_{i}-\beta_{i}}{L \xi_{i}} \\
& \left(\Delta \Psi^{\prime}\right)^{2}=\sum_{i}\left(\frac{\partial \Psi^{\prime}}{\partial \omega_{i}}\right)^{2} \omega_{i}, \quad \frac{\partial \Psi^{\prime}}{\partial \omega_{i}}=\frac{1}{L \eta_{i}^{\prime}} \\
& \left(\Delta \Psi^{\prime}\right)^{2}=\frac{1}{L^{2}} \sum_{i}=\frac{1}{L^{2}} \sum_{i} \frac{S_{i}+\beta_{i}}{\xi_{i}^{2}} \\
& \left(\frac{\Delta \Psi^{\prime}}{\Psi^{\prime}}\right)^{2}=\left(\sum_{i} \frac{\omega_{i}-\beta_{i}}{L \xi_{i}}\right)^{-2} \frac{1}{L^{2}} \sum_{i} \frac{S_{i}+\beta_{i}}{\xi_{i}^{2}} \\
& =\frac{S+\mathrm{B}}{S^{2}} \frac{L}{\Omega} \Xi^{2} \sum_{i} \frac{\psi_{i}}{\xi_{i}}\left(1+\frac{\beta_{i}}{S_{i}}\right)
\end{aligned}
$$

Compare this now with our formula for $\left(\frac{\Delta \Psi}{\Psi}\right)^{2}$ for $\lambda_{i}=1$:

$$
\begin{aligned}
\left(\frac{\Delta \Psi}{\Psi}\right)^{2} & =\frac{S+\mathrm{B}}{S^{2}}\left\{1+\frac{1}{\Omega} \sum_{i} \omega_{i}\left[\left(1-\frac{\Xi}{\xi_{i}}\right)^{2}-2\left(1-\frac{\Xi}{\xi_{i}}\right)\right]\right\} \\
& =\frac{S+\mathrm{B}}{S^{2}}\left\{1+\frac{1}{\Omega} \sum_{i} \omega_{i}\left[1-\frac{2 \Xi}{\xi_{i}}+\left(\frac{\Xi}{\xi_{i}}\right)^{2}-2+2 \frac{\Xi}{\xi_{i}}\right]\right\}=\left(\frac{\Delta \Psi^{\prime}}{\Psi^{\prime}}\right)^{2}
\end{aligned}
$$

