# update on Higgs self-coupling study @ ILC

Claude Dürig, Jenny List (DESY) Junping Tian, Keisuke Fujii (KEK)

ILD Meeting 2014, Sep. 6-9, 2014 @ Oshu

### status

- ☑ DBD benchmark analysis: ZHH @ 500 GeV
- ☑ DBD benchmark analysis: vvHH @ 1 TeV
- ☑ LC-REP-2013-003
- updating analysis with mH=125 GeV
- impact of overlay from  $\gamma\gamma$ ->hadrons
- impact of beam polarisations
- improving analysis technique / strategy
  - isolated lepton tagging
  - o kinematic fitting
  - o optimize cuts for coupling instead of cross section
  - o matrix element method and color-singlet-jet-clustering





### ILC white paper: Higgs Self-coupling Projections

(full simulation done w/ mH = 120 GeV, extrapolated to mH = 125 GeV)

| 500 | GeV: | 500 (1600) fb <sup>-1</sup>  |
|-----|------|------------------------------|
| 1   | TeV: | 1000 (2500) fb <sup>-1</sup> |

P(e-,e+)=(-0.8,+0.3) @ 250, 500 GeV P(e-,e+)=(-0.8,+0.2) @ 1 TeV

| $\Delta \lambda_{HHH} / \lambda_{HHH}$ | 500 GeV |     |     | 500 GeV + 1 TeV |     |     |
|----------------------------------------|---------|-----|-----|-----------------|-----|-----|
| Scenario                               | А       | В   | С   | А               | В   | С   |
| Baseline                               | 104%    | 83% | 66% | 26%             | 21% | 17% |
| LumiUP                                 | 58%     | 46% | 37% | 16%             | 13% | 10% |

Scenario A (done):HH-->bbbb, full simulation doneScenario B (done):adding HH-->bbWW\*, full simulation done (M.Kurata)<br/>(M.Kurata), ~20% relative improvementScenario C (ongoing):color-singlet clustering, matrix element method,<br/>kinematic fitting, flavor tagging, expected ~20%<br/>relative improvement (conservative)

J. Tian, LC-REP-2013-003

C.Duerig @ AWLC14

M. Kurata @ ECFA2013

# Preliminary results for 125 GeV without overlay

m<sub>H</sub>= 120 GeV results extrapolated to 125 GeV give a precision of 53% on Higgs self-coupling
 preliminary results without overlay

|     | modes                                                  | signal  | background | l sig        | nificance                                  |       |
|-----|--------------------------------------------------------|---------|------------|--------------|--------------------------------------------|-------|
|     |                                                        |         |            | excess       | measurement                                |       |
|     | $ZHH \rightarrow I^{-}I^{+}HH$                         | 3.0     | 4.3        | $1.16\sigma$ | $0.91\sigma$                               |       |
|     |                                                        | 3.3     | 6.0        | $1.12\sigma$ | $0.91\sigma$                               |       |
|     | $ZHH \rightarrow \nu \bar{\nu} HH$                     | 5.2     | 6.9        | $1.63\sigma$ | $1.37\sigma$                               |       |
|     | $ZHH \rightarrow q\bar{q}HH$                           | 9.2     | 20.9       | $1.82\sigma$ | $1.64\sigma$                               |       |
|     |                                                        | 7.7     | 23.5       | $1.45\sigma$ | $1.31\sigma$                               |       |
|     |                                                        |         |            |              |                                            |       |
| cro | ss section: $\frac{\Delta \sigma_{ZHH}}{\sigma_{ZHH}}$ | = 32.6% | %          | Higgs self-  | -coupling: $\frac{\Delta\lambda}{\lambda}$ | = 53% |
|     |                                                        |         |            |              |                                            |       |

|               | 500 GeV at $\mathcal{L}=2$ ab $^{-1}$ |     |     |  |
|---------------|---------------------------------------|-----|-----|--|
| scenario      | Α                                     | В   | С   |  |
| extrapolated  | 53%                                   | 42% | 34% |  |
| full analysis | 53%                                   | 42% | 34% |  |

Extrapolation works, slightly conservative

Scenario A: HH → bbbb
Scenario B: with HH → bbWW\*, ≈ 20% improvement
Scenario C: analysis improvement (kinematic fit, jet-clustering, etc.), expect 20% improvement

#### We achieve a precision of 53% on the Higgs self-coupling for $m_{\rm H}=125~{ m GeV}!$ Effect of $\gamma\gamma$ -overlay?



### effect of overlay and strategy of removal



<N> = 1.7 (1.2) @ 500 GeV

- exclusive kt algorithm.
- optimization: R-value and Njets.
- new method based on MVA being developed.



### impact of overlay on self-coupling

#### Preliminary results for 125 GeV with overlay

| modes                              | signal | background | significance |              |
|------------------------------------|--------|------------|--------------|--------------|
|                                    |        |            | excess       | measurement  |
| $ZHH \rightarrow I^-I^+HH$         | 2.7    | 5.9        | $0.91\sigma$ | $0.72\sigma$ |
|                                    | 3.4    | 8.0        | $1.01\sigma$ | $0.85\sigma$ |
| $ZHH \rightarrow \nu \bar{\nu} HH$ | 5.6    | 9.0        | $1.45\sigma$ | $1.23\sigma$ |
| $ZHH \rightarrow q\bar{q}HH$       | 8.3    | 21.8       | $1.61\sigma$ | $1.45\sigma$ |
|                                    | 8.7    | 38.2       | $1.31\sigma$ | $1.21\sigma$ |

|  | cross section: | $rac{\Delta\sigma_{\rm ZHH}}{\sigma_{\rm ZHH}}=35.4\%$ |
|--|----------------|---------------------------------------------------------|
|--|----------------|---------------------------------------------------------|

Higgs self-coupling:  $\frac{\Delta\lambda}{\lambda} = 58.1\%$ 

|             | 500 GeV at $\mathcal{L}=2$ ab $^{-1}$ |     |     |  |
|-------------|---------------------------------------|-----|-----|--|
| scenario    | A                                     | В   | С   |  |
| w/o overlay | 53%                                   | 42% | 34% |  |
| w/ overlay  | 58%                                   | 47% | 37% |  |
|             |                                       |     |     |  |

Scenario A: HH → bbbb
Scenario B: with HH → bbWW\*, ≈ 20% improvement
Scenario C: analysis improvement (kinematic fit, jet-clustering, etc.), expect 20% improvement

Considering  $\gamma\gamma$ -overlay, we achieve a precision of 58% on the Higgs self-coupling

| 1 TeV at $\mathcal{L}=2.5~{ m ab}^{-1}$ |     |     |  |  |  |  |
|-----------------------------------------|-----|-----|--|--|--|--|
| A B C                                   |     |     |  |  |  |  |
| 16%                                     | 13% | 10% |  |  |  |  |
| arXiv:1310.0763v3[hep-ph]               |     |     |  |  |  |  |

Using additional WW-fusion data at 1 TeV we can achieve a precision of 10% on the Higgs self-coupling (w/o overlay)



Claude Fabienne Dürig | Higgs self-coupling at ILC | FLC group meeting, 25.08.2014 | 17/19

it has a significant impact (8% worse); particularly with few more overlaid particles, some background can be more like signal; we still need look into some detail to improve this; on the other hand, <N> of overlay is over estimated, we still have hope to recover.

### impact of beam polarisations

> standard polarisation used in analysis  $P(e^-, e^+)=(-0.8, 0.3)$  with  $\mathcal{L}=2$  ab<sup>-1</sup>

rough estimation of Higgs self-coupling accuracy for other polarisations

| Polarisation                        | no overlay    |                            | ove                             | rlay                    |
|-------------------------------------|---------------|----------------------------|---------------------------------|-------------------------|
| P(e <sup>-</sup> , e <sup>+</sup> ) | cross section | ross section self-coupling |                                 | self-coupling           |
| (-0.8, 0.0)                         | 36.7%         | 60.1%                      | 40.7%                           | 66.7%                   |
| (0.8, 0.0)                          | 37.2%         | 61.1%                      | 41.7%                           | 68.4%                   |
| combined                            | 26.2%         | 42.9%                      | 29.1%                           | 47.8%                   |
| (-0.8, 0.3)                         | 32.6%         | 53.5%                      | 35.5%                           | 58.1%                   |
| (0.8, -0.3)                         | 33.5%         | 54.9%                      | 37.1%                           | 60.8%                   |
| combined                            | 23.4%         | 38.3%                      | 25.6%                           | 42.0%                   |
| (-0.8, 0.6)                         | 29.9%         | 49.2%                      | 33.6%                           | 55.1%                   |
| (0.8, -0.6)                         | 30.6%         | 50.2%                      | 33.8%                           | 55.4%                   |
| combined                            | 21.4%         | 35.1%                      | 23.8%                           | 39.1%                   |
|                                     |               | combi                      | ned: $P(\pm) \cdot 2 ab^{-1} +$ | $-P(-) \cdot 2 ab^{-1}$ |

▶ for  $P(e^-) = -0.8$ : increase  $P(e^+) \rightarrow 10\%$  improvement decrease  $P(e^+) \rightarrow 10\%$  worsening

similar results for opposite polarisations

# isolated lepton tagging

- general lepton identification: different fractions of energy deposited in ECAL, HCAL and Yoke.
- isolation requirement: effect of neighbour particles (now defined by two cones, one small, one large); from primary vertex.
- multivariate method is used to get the best efficiency / purity; output classifier (tagging) is kept for following optimization.
- shower shape not yet used (start point, lateral distribution), helpful for charged pion suppression.
- isolation still not ultimately optimized: infinity layers of cones (energy ratio .vs. cone angle).



 $e/\mu$ 

| Eff (%) | eeHH | μμΗΗ | bbbb   | evbbqq | μνbbqq |
|---------|------|------|--------|--------|--------|
| NEW     | 87.0 | 89.1 | 0.0017 | 0.32   | 0.020  |
| DBD     | 85.7 | 88.4 | 0.028  | 1.44   | 0.10   |
| LoI     | 81.9 | 85.4 | 0.43   | 2.71   | 1.94   |

incorporate with Kurata-san's study on shower profile; still room to improve

# kinematic fitting

#### Benjamin Hermberg (DESY)



much better Higgs mass resolution, going to check with background

### recent development of Matrix Element tools

(approach the true likelihood of each event)

JT@AWLC14



- showed very encouraging improvement in ZZ-fusion analysis.
- going to be applied to event weighting in ZHH analysis (to increase sensitivity from self-coupling diagram).
- would be really exciting if we can apply to colorsinglet-jet-clustering (see following slides)

(developed for full detector simulation, available in latest ilcsoft release v01-17-06)

# what's wrong with current jet-clustering?



- the mis-clustering of particles degrades significantly the separation between signal and BG.
- it is studied that using perfect color-singlet-jet-clustering can improve  $\delta\lambda/\lambda$  by 40%!

### how to approach perfect jet-clustering?

(idea of a mini-jet based jet-clustering algorithm)



- early stage of jet-clustering —> find all minijet : suppose the traditional clustering algorithm can work well with very small yvalues.
- combine the mini-jets: ideally we need matrix element at parton shower level!







key issue: interference  $\sigma = \lambda^2 S + \lambda I + B$ 





key issue: interference  $\sigma = \lambda^2 S + \lambda I + B$ 



Signal diagram













Signal diagram



### *σ*<sub>ZHH</sub> ~ 0.018 fb

 $\sigma_{vvHH} \sim 0.16 \text{ fb}$ 

@ 500 GeV

@ 1 TeV



σ<sub>ZHH</sub> ~ 0.018 fb

 $\sigma_{vvHH} \sim 0.16 \text{ fb}$ 



key issue: interference  $\sigma = \lambda^2 S + \lambda I + B$ 



(with proper weighting sensitivity factor can be improved by ~10%)



$$\frac{\Delta\lambda}{\lambda} = \mathbf{F} \cdot \frac{\Delta\sigma}{\sigma}$$

Factor increases quickly as going to higher energy

for ZHH, the expected optimal energy ~ 500 GeV (rather flat at 500 — 600 GeV)

for vvHH, expected precision improves slowly as going to higher energy



- for ZHH process, 500 GeV is still the optimal energy.
- we do gain significantly from vvHH @ 1 TeV, where sensitivity factor is much smaller than that in ZHH.
- new baseline running scenario is up to 500 GeV, what would we expect?
- with 5500 fb<sup>-1</sup> @ 500 GeV, we expect 25% precision on self-coupling based on already-done analyses; conservatively, 20% is achievable with improved techniques.
- reminder: 75% @ LoI —> 44% @ DBD (mH=120GeV, 2ab<sup>-1</sup>)
- with 1 TeV upgrade:  $\delta \lambda / \lambda < 10\%$

### summary and next step

- it is one of the fundamental physics goal to measure λ<sub>HHH</sub> at the future collider; 10% precision is achievable at 1 TeV ILC.
- current focus is to improve analysis at 500 GeV.
- quite lots of efforts ongoing: kinematic fitting, isolated lepton tagging, jet clustering and jet pairing, optimisation strategy
- and don't forget flavor tagging...
- as planned, at some point we should publish our results, instead of waiting for all techniques available.

# Backup

#### new weighting method to enhance the coupling sensitivity



$$\frac{d\sigma}{dx} = B(x) + \lambda I(x) + \lambda^2 S(x)$$
irreducible interference self-coupling
bservable: weighted cross-section
$$\sigma_w = \int \frac{d\sigma}{dx} w(x) dx$$



equation of the optimal w(x) (variance principle):

./

$$\sigma(x)w_0(x)\int (I(x) + 2S(x))w_0(x)dx = (I(x) + 2S(x))\int \sigma(x)w_0^2(x)dx$$

general solution:

$$w_0(x) = c \cdot \frac{I(x) + 2S(x)}{\sigma(x)}$$

c: arbitrary normalization factor

### decay plane



particles from one same color singlet should be around the decay plane

 $\chi^2 = P_t^2$ 

transverse momentum relative to the decay plane

vvHH ---> vvbbbb

- using the realistic Duhram algorithm for the mini-jet clustering, stop when there are 20 mini-jets left.
- calculate the chi2 for each minijet, there are two decay planes, we get two chi2 for each minijet. (currently the two decay planes are decided by cheating)



#### rapidity gap? (reconstructed)

decay frame (one of the b momentum as z-axis)



- perfect jet-clustering for vvHH events
- rapidity of every particle in the jet pair

#### Shao-Feng Ge (KEK)

### The Georgi Algorithms [arXiv:1408.1161]

Jet function:

$$J_{\beta}(P_{\alpha}) \equiv E_{\alpha} - \beta \frac{P_{\alpha}^2}{E_{\alpha}} = E_{\alpha} \left[ (1-\beta) + \beta v_{\alpha}^2 \right] \,,$$

with jet momentum  $P_{\alpha} = (E_{\alpha}, \mathbf{P}_{\alpha}) \equiv \sum_{i \in \alpha} p_i$  & velocity  $v_{\alpha} \equiv \frac{|\mathbf{P}_{\alpha}|}{E_{\alpha}}$  where  $\alpha$  is a set of subjets.

- $J_{\beta}$  increases when clustering:
  - *E*<sub>α</sub> increases due to energy conservation;
  - Jet virtuality (mass)  $P_{\alpha}^2$  doesn't increase that much.
- Not only pair-wisely, but also globally.
- Cone implemented implicitly:

$$J_{\beta}(P_{\alpha}+p_j) = (E_{\alpha}+E_j)\left[(1-\beta)+\beta\frac{|\mathbf{P}_{\alpha}|^2+2|\mathbf{P}_{\alpha}||\mathbf{p}_j|\cos\theta+|\mathbf{p}_j|^2}{(E_{\alpha}+E_j)^2}\right]$$

#### Shao-Feng Ge (KEK)

#### Link to Parton Shower

Tends to emit one soft parton,

$$z \rightarrow 0$$
.

• Soft parton takes less fraction of energy @ higher scale.

$$\frac{1}{2} - \sqrt{\frac{1}{4} - \frac{\Lambda}{\sqrt{t}}} < z < \frac{1}{2} + \sqrt{\frac{1}{4} - \frac{\Lambda}{\sqrt{t}}}.$$

• Angular ordering



$$\theta_i \approx \frac{t_i}{2\alpha_i^2} = \frac{t_i}{2z_i^2\alpha_{i-1}^2}, \quad \theta_i < \theta_{i-1} \quad \Rightarrow \quad \mathbf{t_i} < (\mathbf{1} - \mathbf{z_{i-1}})^2 \mathbf{t_{i-1}}.$$