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DBD benchmark analysis: ZHH @ 500 GeV!
SGV fast simulation analysis: ννΗΗ @ 1 ΤeV!
DBD benchmark analysis: ννHH @ 1 TeV!
LC-REP-2013-003
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updating analysis with mH=125 GeV!
impact of overlay from γγ->hadrons!
impact of beam polarisations!
improving analysis technique / strategy!

isolated lepton tagging!
kinematic fitting!
optimize cuts for coupling instead of cross section!
matrix element method and color-singlet-jet-clustering
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��HHH/�HHH 500 GeV 500 GeV + 1 TeV

Scenario A B C A B C

Baseline 104% 83% 66% 26% 21% 17%

LumiUP 58% 46% 37% 16% 13% 10%

Scenario A (done):       HH-->bbbb, full simulation done!
Scenario B (done):       adding HH-->bbWW*, full simulation done  (M.Kurata)!
                                       (M.Kurata), ~20% relative improvement!
Scenario C (ongoing): color-singlet clustering, matrix element method, !
                                       kinematic fitting, flavor tagging, expected ~20% !
                                       relative improvement (conservative)

ILC white paper: Higgs Self-coupling Projections
(full simulation done w/ mH = 120 GeV, extrapolated to mH = 125 GeV)

J. Tian, LC-REP-2013-003 M. Kurata @ ECFA2013
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C.Duerig @ AWLC14

500 GeV:    500 (1600) fb-1!
1     TeV:   1000 (2500) fb-1

P(e-,e+)=(-0.8,+0.3) @ 250, 500 GeV
P(e-,e+)=(-0.8,+0.2) @ 1 TeV
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effect of overlay and strategy of removal
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exclusive kt algorithm. !
optimization: R-value and Njets.!
new method based on MVA being developed.
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impact of overlay on self-coupling

it has a significant impact (8% worse); particularly with few more overlaid particles, some 
background can be more like signal; we still need look into some detail to improve this; 

on the other hand, <N> of overlay is over estimated, we still have hope to recover.
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impact of beam polarisations



general lepton identification: 
different fractions of energy 
deposited in ECAL, HCAL and Yoke.  !

isolation requirement: effect of 
neighbour particles (now defined by 
two cones, one small, one large); 
from primary vertex.!

multivariate method is used to get 
the best efficiency/purity; output 
classifier (tagging) is kept for 
following optimization. !

shower shape not yet used (start 
point, lateral distribution), helpful 
for charged pion suppression.!

isolation still not ultimately 
optimized: infinity layers of cones 
(energy ratio .vs. cone angle).
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Eff (%) eeHH μμHH bbbb eνbbqq μνbbqq

NEW 87.0 89.1 0.0017 0.32 0.020

DBD 85.7 88.4 0.028 1.44 0.10

LoI 81.9 85.4 0.43 2.71 1.94

incorporate with Kurata-san’s study on shower profile; still room to improve

isolated lepton tagging

e/μ
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kinematic fitting
Benjamin Hermberg (DESY)

very promising!!
much better Higgs mass resolution, !

going to check with background
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(developed for full detector simulation, available in latest ilcsoft release v01-17-06)

recent development of Matrix Element tools
(approach the true likelihood of each event)
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eeH (ZZ-fusion)  versus eeH (ZH)
showed very encouraging 
improvement in ZZ-fusion 
analysis.!

going to be applied to event 
weighting in ZHH analysis 
(to increase sensitivity from 
self-coupling diagram).!

would be really exciting if 
we can apply to color-
singlet-jet-clustering (see 
following slides)

JT@AWLC14
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real jet-clustering

vvHH mode:    (BG: ZZH and ZZZ)
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perfect jet-clustering

scatter plot of two Higgs masses

✦ the mis-clustering of particles degrades significantly the 
separation between signal and BG. !

✦ it is studied that using perfect color-singlet-jet-clustering 
can improve δλ/λ by 40%!

what’s wrong with current jet-clustering?
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sensitive

find vertex before clustering then merge 
particles from same vertex (LCFI+)!

early stage of jet-clustering —> find all mini-
jet : suppose the traditional clustering 
algorithm can work well with very small y-
values.!

combine the mini-jets: ideally we need 
matrix element at parton shower level!
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(idea of a mini-jet based jet-clustering algorithm)
how to approach perfect jet-clustering?
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impact of centre-of-mass energies
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key issue: interference
� = �2 S + � I +B

@ 500 GeV @ 1 TeV
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key issue: interference

Signal

diagram
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key issue: interference
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key issue: interference
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key issue: interference
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key issue: interference
� = �2 S + � I +B
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(with proper weighting sensitivity factor can be improved by ~10%)
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Factor increases quickly as 
going to higher energy

for ZHH, the expected optimal 
energy ~ 500 GeV (rather flat 
at 500 — 600 GeV)

for ννHH, expected precision 
improves slowly as going to 
higher energy

Eff 100%, no BG

Z
Ldt = 2ab�1

impact of centre-of-mass energies
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expected coupling precision with more realistic setup

impact of centre-of-mass energies
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impact of centre-of-mass energies

✦ for ZHH process, 500 GeV is still the optimal energy.!

✦ we do gain significantly from vvHH @ 1 TeV, where 
sensitivity factor is much smaller than that in ZHH.!

✦ new baseline running scenario is up to 500 GeV, what 
would we expect?!

✦ with 5500 fb-1 @ 500 GeV, we expect 25% precision on self-
coupling based on already-done analyses; conservatively, 
20% is achievable with improved techniques.!

✦ reminder: 75% @ LoI —> 44% @ DBD (mH=120GeV, 2ab-1)!

✦ with 1 TeV upgrade: δλ/λ < 10%



it is one of the fundamental physics goal to measure 
λΗΗΗ at the future collider; 10% precision is achievable at 
1 TeV ILC.!

current focus is to improve analysis at 500 GeV.!

quite lots of efforts ongoing: kinematic fitting, isolated 
lepton tagging, jet clustering and jet pairing, 
optimisation strategy!

and don’t forget flavor tagging…!

as planned, at some point we should publish our results, 
instead of waiting for all techniques available.

summary and next step
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Backup



new weighting method to enhance the coupling sensitivity

d�

dx
= B(x) + �I(x) + �

2
S(x)

irreducible interference self-coupling

�w =

Z
d�

dx
w(x)dx

 observable: weighted cross-section

21

M(HH) / GeV
200 250 300 350 400 450 500

/d
M

(H
H

)  
/ f

b
md

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002 ZHH (self-coupling only)

ZHH (no self-coupling)

ZHH (interference)

S(x)

B(x)
I(x)

equation of the optimal w(x) (variance principle):

�(x)w0(x)

Z
(I(x) + 2S(x))w0(x)dx = (I(x) + 2S(x))

Z
�(x)w2

0(x)dx

general solution:

w0(x) = c · I(x) + 2S(x)

�(x)
c:  arbitrary normalization factorM(HH) / GeV

200 250 300 350 400 450 500

W
ei

gh
t

-1

-0.5

0

0.5

1

1.5

2

2.5

3

w0(x)

differential cross-section

optimal weighing function



decay plane
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H

particles from one same color singlet 
should be around the decay plane

transverse momentum 
relative to the decay plane

vvHH ---> vvbbbb
using the realistic Duhram 
algorithm for the mini-jet 
clustering, stop when there are 
20 mini-jets left.!

calculate the chi2 for each mini-
jet, there are two decay planes, 
we get two chi2 for each mini-
jet. (currently the two decay 
planes are decided by cheating)
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rapidity gap? (reconstructed)
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✦ perfect jet-clustering for vvHH events!
✦ rapidity of every particle in the jet pair

decay frame (one of the b momentum as z-axis)
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Shao-Feng Ge (KEK)
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Shao-Feng Ge (KEK)


