
ILD Resource Survey

2014/9/9 Y. Sugimoto

Committee under MEXT

We need information from detector groups

TDR validation WG

- Discussion points (example) from MEXT web page
 - Cost
 - Items to calculate the total cost (including items which are not included in the official documents)
 - Validity of the cost which is published
 - Cost increasing factors
 - Possibility of cost reduction (alternatives)
 - Human resource
 - Estimation of human resource during construction and operation (amount, level and field of expertise)
 - Cost of human resource (except for what is included in M&S)
 - Technology
 - What part is achievable with present technology? What part requires further R&D?
 - Feasibility, necessary time, and additional cost of the R&D
 - Possibility of alternative technology

Involvement of LCC

- Accelerator and CFS
 - Akira Yamamoto consults with LCC members
- Detector
 - LCC P&D Associate Director (Hitoshi Yamamoto) set up following working groups
 - Physics WG (Convener: K.Fujii, C.Grojean, M.Peskin)
 - ILC Infrastructure & planning WG (Convener: S.Yamada)
 - Physics WG prepares materials for Particle-Nuclear Physics WG
 - ILC Infrastructure & Planning WG prepares materials for TDR validation WG

ILC I&P WG

• Members

- Convener: Sakue Yamada
- ILD: Karsten Busser, Frank Simon (, Mary-Cruz Fouz)
- SiD: Marty Breidenbach, Marcel Stanitzki
- Local: Kiyotomo Kawagoe, Yasuhiro Sugimoto
- Mandate
 - Study of the human and budgetary resource needs during construction and operation
 - The time profile of the resources and their reality to quire
 - The organizational structure to interact with the ILC laboratory (Not relevant to MEXT review)

Resource survey in ILD

- Very premature study has been done and presented at ILD session of AWLC2014
- There are several comments
 - Manpower needed is overestimated
 - FTE*year might be more appropriate than FTE
- We need more information from sub-detector groups
- Human resource needs for operation period also has to be clarified
- Excel file (and Word file for instruction) has been sent to subsystem contacts to survey manpower needed for construction and operation period
- Rough estimate of time profile of budget is also asked
- Newly proposed detector hall scheme (Hybrid-A') and CMS style detector assembly is assumed for the schedule
- Detector construction period of 8 years is assumed to cope with possible early start with 250GeV CMS energy

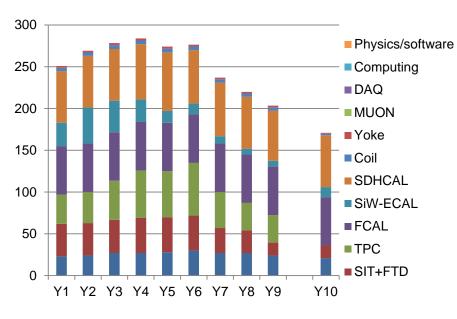
Resource survey in ILD

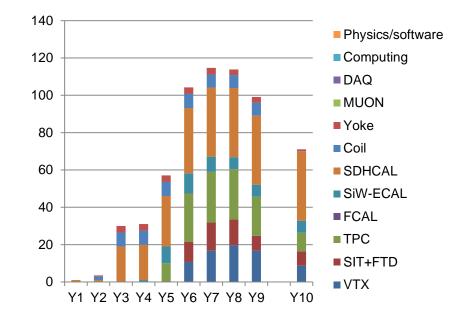
- Timeline
 - Time line was drawn based on the schedule in TDR (Figure 14.10. in Vol.3-II) and recent CFS study
 - Assembly hall is assumed to be built in 2 years from ground breaking
 - Duration of "Assembly on site" can be modified by subsystem groups

				ILD assem	bly timel	ine for Hybrid	option (CMS	5 style assembly))							
Sub-detector	Y-3 Y-2 Y-		Y-1	Y1	Y2	Y3	Y4	Y5	Y6		Y7 Y		Y9	Y10		
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3	Q4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q1 0	2 Q3 Q4	1 Q1 Q2 Q3 Q	4 Q1 Q2	Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q		
Detector Hall					Excavation/Utilities											
Assembly Hall				Constr	uction			Ex	tention							
VTX				TDR			Construction of	off site		Assembly or	n site Ins	1				
SIT				TDR			Construction of	Assembly or	n site Ins		50					
FTD				TDR			Construction of	Assembly on site Ins			gin					
TPC			TDR			Const	Asse	embly on site	Ins	commissioning r commissioning	sion	-				
FCAL			TDR			Construction off site				embly on site	Ins	issi	nise	5		
ECAL (Barrel)		TDR			Со	nstruction off site	Ass. On site	Install	I 60		Ē	L L	sics			
ECAL (End cap)		TDR			Constructi	on off site	Ass. C	On site Install		lowering				physics		
HCAL (Barrel)		TDR			Constr	uction off site		Ass. On site Insta	ill 🛛	we		to	ato	forp		
HCAL (End cap)		TDR		Co	nstruction o	off site	Ass. On site Install					Detector	Accelerator	1 y f		
Coil		TDR	Bid	Modules const	ruction off	site Modules cons	t. off site/assem	nbly on site Ins		Detector		De	Acce	Ready		
Iron Yoke		TDR	Bid	Modules const	ruction off	site Modules o	onstruction off	site/ring assembly o	lete			1	~			
Muon det		TDR			Constructi	truction off site		site Install								
DAQ				TDR		Construct	ion off site	on site	Commissioning		(Operation				
Computing						TDR	Bid	Delivery on site	very on site		Operation					
Physics/software		Simulation					TDR					mulation				
										Ins: I	nstall					
										FM: Field mapping						

Resource survey in ILD

• Numbers to be specified by each sub-system group


VTX	Now	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9	Y10	Total in	TOO
	-					Q1 Q2 Q3 Q4						construction	TDR
Timeline	R&D	TDR		Construct				Assembly on	site Ins		Physics Run	phase	value
Budget													
Annual budget (MILCU)			0.34	0.68	0.68	0.68	0.68	0.17	0.17		0.1	3.4	3.4
FTE from external labs/univ													
Item													
Sensor	1.5	3	3	2	2	2	2	1	1	1	1	17	
Electronics	1.5	3	3	5	5	5	5	3	3	3	3	35	
Ladder	1.5	2	2	3	3	3	3	2	2	1	1	21	
Mechanical support	1.5	3	3	3	3	3	3	2	2	2	2	24	
Cooling	0.5	2	2	2	2	2	2	2	2	2	2	18	
Assembly/alignment		1	2	2	2	2	2	2	2	1	1	16	
Flexible cable/connectors		1	1	2	2	2	2	2	2	2	1	16	
DAQ	1	3	3	3	3	3	5	5	5	5	3	35	
Beam pipe/Inner suppoty tube		1	. 1	. 1	1	2	2	2	2	1	1	13	
Software	0.5	3	3	3	3	3	3	5	5	5	5	33	
Management	0.5	1	1	1	1	1	1	1	1	1	1	9	
Total	8.5	23	24	27	27	28	30	27	27	24	21	237	
FTE from ILC labo													
Item													
Cooling							0.2				0.2	0.8	
Total		0	0	0	0	0	0.2	0.2	0.2	0.2	0.2	0.8	
FTE on site													
Item													
Sensor							0.5			0.5	0.5		
Electronics			-	-			1	2		1	0.5		
Ladder			-	-			1	2		2	0.5		
Mechanical support			-	-			1	2	2	2	1		
Cooling							1	1	1	1	0.2		
Assembly/alignment							1	2	-	2	0.3		
Flexible cable/connectors							1	1	1	1	1		
DAQ							1	2	2	2	1		
Beam pipe/Inner suppoty tube							1	1	1	1	0.5		
Software							1	2		3	2		
Management							1	1	1	1	1	8	
ILC labo staff		0	C		-		0.2		-		0.2	0	
Total		0	0	0	0	0	10.7	16.7	19.7	16.7	8.7		


Status of the survey

- Inputs from sub-detector contacts so far
 - Si ECAL
 - AHCAL
 - SDHCAL
 - SIT/FTD
 - VTX
 - TPC
 - Yoke
- Some discussion issues
 - ETD/SET was forgotten \rightarrow Who is responsible?
 - It was suggested "Common engineering" sheet should be added: safety, detector integration and infrastructure, detector hall issues, etc.

Status of the survey

Annual budget

Total FTE needed

FTE on site

Some comments

- FTE for Physics/software is not included yet
 - It must be quite large, particularly in Y10
- Some sub-detector does not have entry in Y10
 - Running cost cannot be zero
 - Detector upgrade cost can be included
 - Some FTE must be needed for maintenance

Prospects

- MEXT TDR review for detectors would be held quite later than we expected: in Feb. 2015 (?)
 - Revise the numbers, if necessary
 - Detector running cost and budget for detector upgrade should be considered more seriously by then (Please give me the numbers of annual budget and FTE needed in Y10)
- There will be no report by Sakue at LCWS2014
- But the schedule could be changed (actually happened for CFS: Nov.→ Sep.8th)
- Sakue suggested to collect information of the budget needed by next TDR validation WG meeting

BACK UP SLIDES

Particle-Nuclear Physics WG

- Mandate
 - Review the issues listed below concerning the contents of scientific studies which ILC aims, and supplement the discussion at the Academic Experts Committee for ILC:
 - Scientific role which ILC plays in the future plan of particle and nuclear physics
 - Other related issues
- Schedule
 - This WG will last between May 2014 and March 2016 (can be extended if necessary)
 - Review meetings will be held ~1/month
 1st meeting was held on June 24

Particle-Nuclear Physics WG

- Discussion points (example)
 - What programs are suitable to tackle the challenges to be uncovered in particle physics?
 - From the programs above, what scientific outcome is expected for particle physics in future? What is the importance of the outcome?
 - Based on the expected results from upgraded LHC, what program can we expect to produce new rich results?
 - What is the expected outcome of ILC? How do you evaluate its certainty? What impact does the expected outcome give to particle physics?
 - Does ILC have scientific advantage over other future plans (FCC, CLIC, CEPC, etc.)?
 - Can you get enough discussion and wide agreement in the community of the related scientists taking other future projects into account?
 - How much human resources do you expect to gather from abroad?

TDR validation WG

- Mandate
 - Review the issues listed below concerning the cost and technical performance, and supplement the discussion at the Academic Experts Committee for ILC:
 - Validity of the cost estimation, necessary human resource, and technical feasibility described in the TDR
 - Other related issues
- Schedule
 - This WG will last between May 2014 and March 2016 (can be extended if necessary)
 - Review meetings will be held ~1/month
 - Detector will be discussed in January 2015