2015-20 R&D Plans for an ILC Vertex Detector based on CMOS Pixel Sensors (CPS)

M. Winter (on behalf of the PICSEL group of IPHC-Strasbourg)

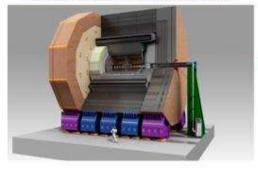
ILD MEETING, Oshu, 8th Septembre 2014

Outline

- Starting points : STAR-PXL & ALICE-ITS
- General strategy: 2-sided ladders with different CPS on L1, L2, L3-6
- Plans for the coming years (extrapolating from present achievements)
- Summary

CMOS Pixel Sensors (CPS): A Long Term R&D

Initial objective: ILC, with staged performances


CPS applied to other experiments with intermediate requirements

EUDET 2006/2010

Beam Telescope

ILC >2020
International Linear Collider

EUDET (R&D for ILC, EU project)

STAR (Heavy Ion physics)

CBM (Heavy Ion physics)

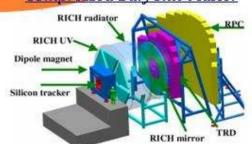
ILC (Particle physics)

HadronPhysics2 (generic R&D, EU project)

AIDA (generic R&D, EU project)

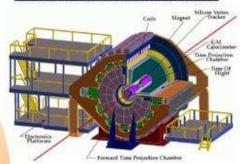
FIRST (Hadron therapy)

ALICE/LHC (Heavy Ion physics)


EIC (Hadron physics)

CLIC (Particle physics)

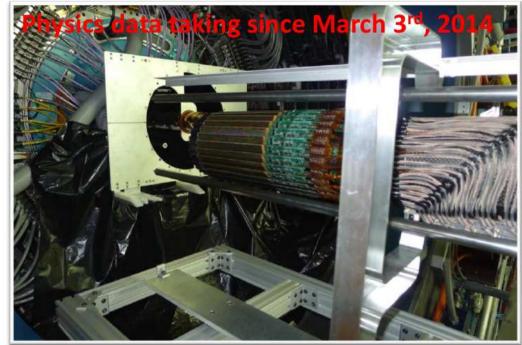
BESIII (Particle physics)



CBM >2018
Compressed Baryonic Matter

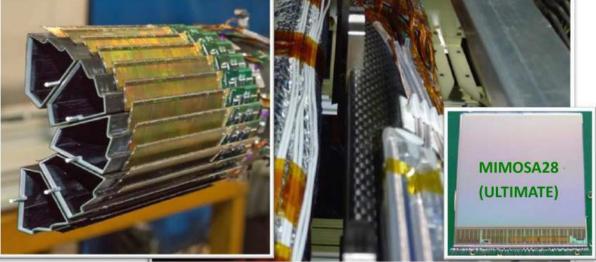
STAR 2013

Solenoidal Tracker at RHIC

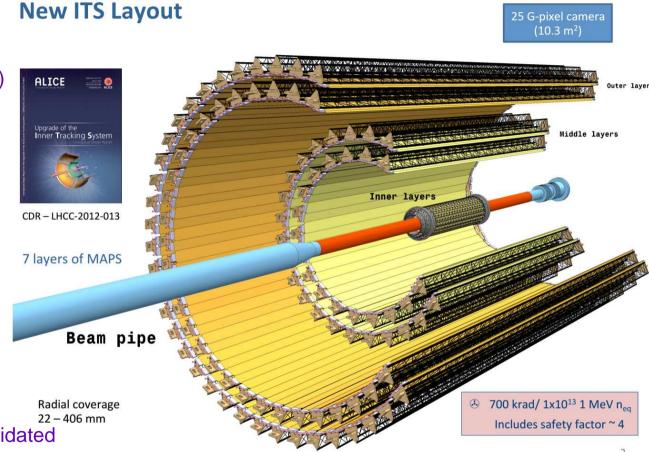


ALICE 2018

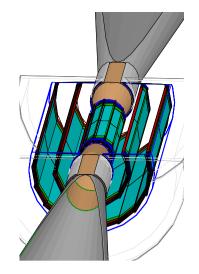
A Large Ion Collider Experiment

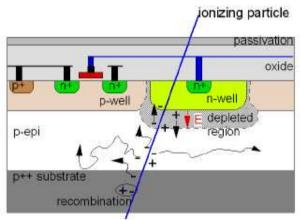


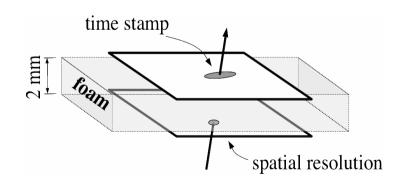
Starting point: Ultimate chip in STAR



Next Progress Carrier: ALICE-ITS Upgrade


- Vx Det. (3 layers) + Tracker (4 layers, 10 m 2) : 5 μm , 20-30 μs , 700 kRad & 10 13 n $_{eq}$ /cm 2 at 30 $^{\circ}$ C
- 3 alternative & complementary sensors being developped (CERN main partner):
 - $_{\circ}$ Conservative: MISTRAL (end-of-col. discri.) $\longleftrightarrow \gtrsim$ 30 $\mu s, <$ 200 mW/cm 2
 - Fast option: **ASTRAL** (in-pixel discri.) $\iff \gtrsim$ 15 μs , 85 mW/cm 2
 - Ambitious: **ALPIDE** (token ring archi.) $\iff \lesssim$ 5 μs , \lesssim 50 mW/cm 2
- Status :
 - MISTRAL : real scale proto. operational \hookrightarrow (5 μm , 40 μs)
 - ASTRAL : in-pixel dicriminator prototype validated \hookrightarrow (5 μm , 20 μs)
 - ALPIDE : full scale proto. functional \mapsto (5-6 μm , 5 μs)
- **Comment :** read-out time is for 1.3/1.4 cm long columns \simeq 2-2.5 imes VXD-L1 column length




Topics Addressed by the R&D

- VERTEX DETECTOR CONCEPT:
 - * Cylindrical geometry based on 3 concentric 2-sided layers
 - * Layers equipped with 3 different CMOS Pixel Sensors (CPS)
- PIXEL SENSOR DEVELOPMENT:
 - * Exploit CPS potential & IPHC (25-30 members) expertise
 - * R&D performed in synergy with other applications

 —— EUDET-BT, STAR, ALICE, CBM, ...
 - * CPS \equiv unique technology being simultaneously granular, thin, integrating full FEE, industrial & cheap
 - * Address trade-off between spatial resolution & read-out speed
- Double-sided ladder development:
 - st Develop concept of 2-sided ladder using 50 μm thin CPS
 - Develop concept of mini-vectors providing high spatial resolution & time stamping
 - * Address the issue of high precision alignment& power cycling in high magnetic field

CMOS Pixel Sensors for the ILD-VXD

Two types of CMOS Pixel Sensors :

* Inner layers (\lesssim 300 cm²):

Priority to read-out speed & spatial resolution

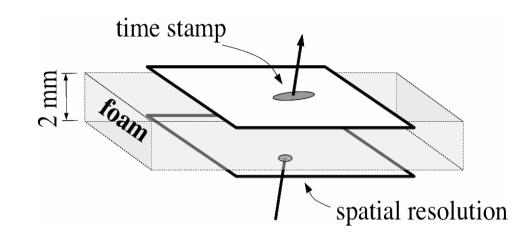
 \hookrightarrow small pixels (17×17 / 33 μm^2)

with binary charge encoding

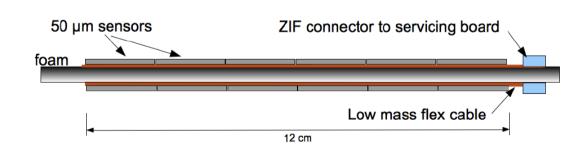
$$\hookrightarrow$$
 t_{r.o.} \sim 50 / 8 μs ; $\sigma_{sp} \lesssim$ 3 / 5 μm

st Outer layers (\sim 3000 cm 2):

Priority to power consumption and good resolution


 \hookrightarrow large pixels (25/35 \times 35 μm^2)

with 3-4 bits charge encoding


$$\hookrightarrow$$
 t_{r.o.} \sim 60 μs ; $\sigma_{sp} \lesssim$ 4 μm

• 2-sided ladder concept for inner layer :

- * Square pixels (17×17 μm^2) on internal ladder face ($\sigma_{sp} \lesssim$ 3 μm)
- * Elongated pixels (22/17×33/102 μm^2) on external ladder face (t_{r.o.} \sim 8 \mapsto few μs)

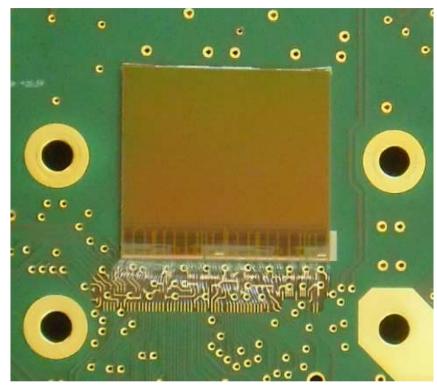
* Total VXD instantaneous/average power < 600/12 W (0.18 μm process)

Upcoming Sensors (Partly) Based on the ALICE Development

Spin-off of MISTRAL :

- $_{\circ}~$ best suited to reach \lesssim 2.8 μm resolution in L1
- $_{\circ}$ BUT pixels of 17 $\mu m imes$ 17 $\mu m \Rightarrow \sim$ 50 μs r.o. time

Spin-offs of ASTRAL :


- $_{\circ}$ L2 : pixels of 17 $\mu m imes$ 102 $\mu m \Rightarrow ~\sim$ 7 $\mu m \oplus$ 2.5 μs
- \circ L1 & L2 : pixels of 22 $\mu m \times$ 33 $\mu m \Rightarrow$ 5 $\mu m \oplus$ 8 μs \longrightarrow mini-vectors \equiv 3.5 $\mu m \oplus$ 4-8 μs
- $_{\circ}$ L3-L6 : pixels of \lesssim 22 $\mu m imes$ 33 $\mu m \Rightarrow \,$ 4-5 $\mu m \oplus$ 8 μs

• Spin-offs of ALPIDE :

- $_{\circ}$ L2 : pixels of 25 μm imes 25 μm \Rightarrow 5 μm \oplus < 5 μs
- $_{\circ}$ L2 : pixels of 15 $\mu m imes$ 125 $\mu m \Rightarrow$ 8 $\mu m \oplus <$ 1 μs reachable ?

Spin-offs of MIMOSA-31, MISTRAL & MIMADC :

- $_{\circ}$ L3-L6 : pixels of 35 $\mu m imes$ 35 $\mu m \Rightarrow$ 4 $\mu m \oplus$ 30-60 μs
- $_{\circ}$ L1-L2 : pixels of 25 $\mu m imes$ 25 $\mu m \Rightarrow$ 3 $\mu m \oplus$ 20 μs or 25 $\mu m imes$ 3.5 $\mu m \oplus$ 15 μs ???
- MIMOSA-33 : Fine Pixels of 4 $\mu m imes$ 4 μm with delayed (analogue) read-out

MISTRAL Proto. (2/3)

SUMMARY

 \triangleright

- CPS are validated for vertex detectors: STAR-PXL physics run of Spring 14
- New CPS generation (ALICE-ITS) provided 1st full scale proto. : 1st tests confirm expectations
- Next steps :
 - finalise ALICE-ITS sensor prototyping in 2015
 - start deriving CPS for VXD in 2016/17 → baseline

Layer	σ_{sp}	t_{int}
ILD-VXD/In	$<$ 3/5 μm	50/8 μs
ILD-VXD/Out	\sim 3.5/4 μm	60/100 μs

- Investigate alternative or more challenging CPS approaches :
 - few $\mu s \mapsto \lesssim$ 1 μs fast sensors for bunch tagging
 - FPCPS with delayed read-out
 - 2-tier CPS combining 2 different CMOS processes
 - CPS (and ladders) optimised for trackers
- 2-SIDED LADDERS : PLUME collaboration
 - Prototype based on MIMOSA-26 sensors on the way to achieve 0.35 % X₀
 - Upcoming years : beyond 2014
 - Validate concept of complementary sensors with ASTRAL/MIMOSA-26
 - Validate power pulsing in strong magnetic field
 - Assess added value of double-sided ladders
 - Investigate possibilities to still reduce the ladder material budget < 0.3% X₀