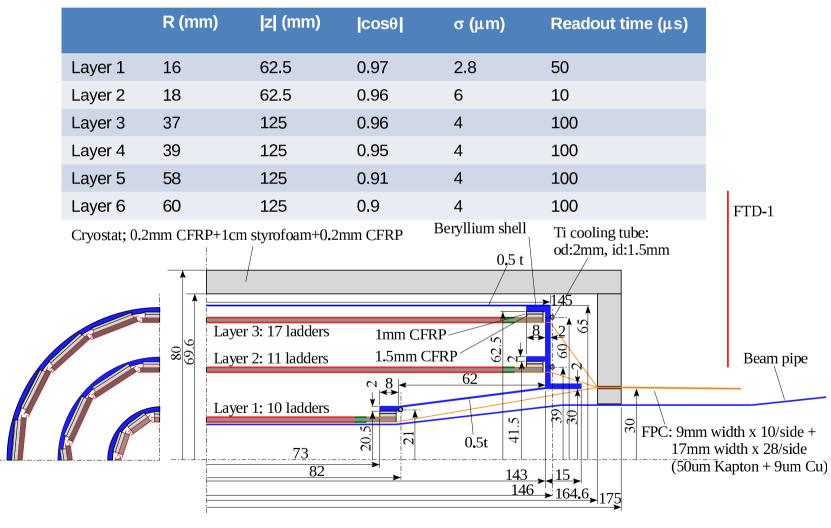
Goals for the ILD Vertex Detector 2015-20 Plans

M. Winter


ILD workshop – Oshu – 6/9th September 2014

Outline

- Introductory remarks
- Detector requirements
- Pixel technologies
- Detector geometry
- Detector operation and services
- Summary

Vertex detector in DBD

Baseline design

Introductory Remarks

- VXD REQUIREMENTS: poorly motivated quantitatively & scientifically
- VXD REQUIREMENTS: lack of strategy
 - supposed to be identical at all coll. energies (but beam BG evolves)
 - do not exploit sensor technology evolution (industry!)
 - do not account for relatively easy upgrade possibilities
- REQUIREMENTS ARE NOT DRIVEN BY "DIFFICULT CASES":
 - impact of beam background on (low p) track reconstruction
 - charm tagging
 - b-tag in top jets (?)
 - secondary vertex electrical charge determination
- \Rightarrow Calls for additional physics performance assessments vs \mathbf{E}_{cm} as well as for more robust, \mathbf{E}_{cm} dependent, requirements

Pixel technologies

- ullet Too poor guidance from requirements to elect/converge on \geq 1 sensor design:
 - \Rightarrow each technology **believed** satisfactory \Rightarrow which one is **best** suited?
- FINE PIXEL RELATED QUESTIONS:
 - which added value for physics ?
 - which limitations from occupancy due to beam BG?
 - \hookrightarrow would FP be adapted to $E_{cm} \approx 250 \text{ GeV}$? up to which E_{cm} can one use FP?
 - o how precise can the alignment be ?
- SENSOR COMBINATION :
 - added value of bunch tagging in L2?
 - added value of mixed pixel techno. & designs ?
 - \hookrightarrow alternatives to DBD strategy ? \longmapsto

	Layer 1		Layer 2	
	σ_{sp}	$t_{r.o.}$	σ_{sp}	$t_{r.o.}$
DBD	2.8 μm	50 μs	6 μm	10 μs
update	2.8 μm	50 μs	5 μm	8 μs
alternative	5 μm	8 μs	5 μm	8 μs

Detector Geometry

- BARREL VS FORWARD DISKS:
 - short vs long barrel
 - o impact of FTD pixel layers performances
- Double-sided vs single-sided ladders
 - \Rightarrow Is there an optimum for "all" physics cases and E_{cm} values ?
- CONTINUOUS (POWER PULSED) VS DELAYED READ-OUT:
 - ⇒ SWOT analysis needed?

Detector Operation and Services

POWER PULSING:

- assess effect of PP in high magnetic field
- o maintain FP option as long as no full proof of principle is achieved

• SERVICES:

- o find a consistent solution for low mass cables and cooling implantation
- preparation of Engineering Design may require mock-ups

Summary

- REFINE VXD REQUIREMENTS : (E_{cm} dependence. ambitious physics cases)
 - guidance for pixel technology
 - guidance for sensor designs & combinations
- SWOT ANALYSIS OF PIXEL TECHNOLOGIES AND VXD GEOMETRIES :
 - ∘ delayed vs continuous read-out ⇒ power pulsing in high magnetic field → alignment ?
 - $_{\circ}$ added value of \lesssim 1 μm resolution (vs inner radius ?)
 - long vs short barrel & connection to FTD pixel planes
 - double-sided vs single-sided ladders
- EXPLOIT RESULTS OF ABOVE TO EXTEND/REFINE ILD PHYSICS POTENTIAL
 - **⇒** strengthen ILC physics case
- STUDY ISSUES OF VXD INTEGRATION → services (cables, cooling)