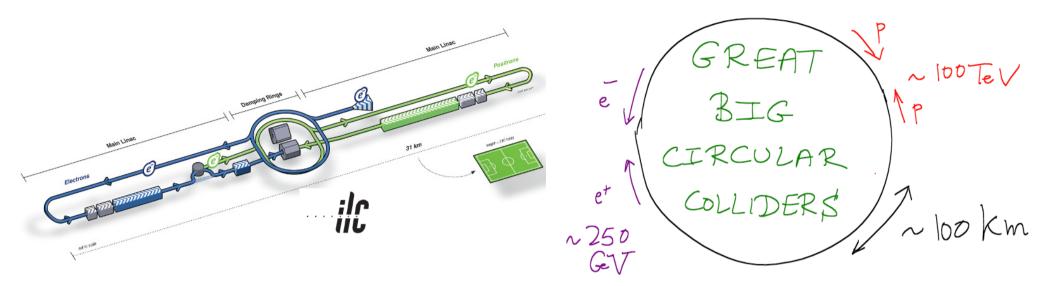

Physics Program & Detector "Design at CEPC. Manqi

Higgs, the gate

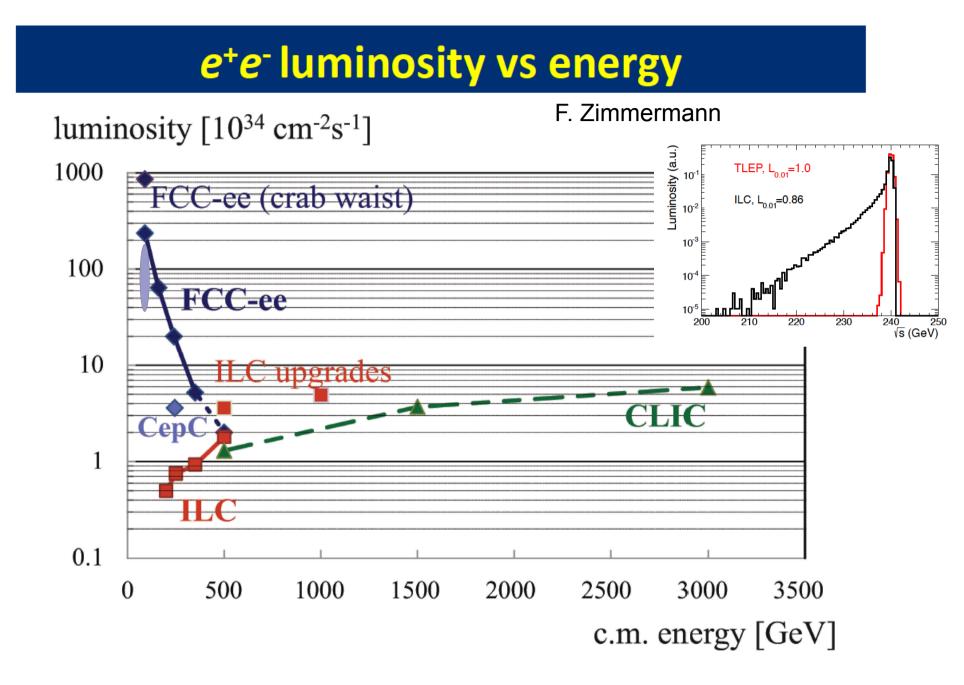
Naturalness, Electro-Weak Phase Transition, Dark matter...


The key: e^+e^- Higgs factory g/g_{SM} ~ 1 + $\delta(1\text{TeV}/\Lambda_{NP})^2$

ILCTDR, 1310.8361 [hep-ex]...

...Higgs couplings: absolute measurements to percentage level... ... a vision of New Physics Landscape at TeV era...

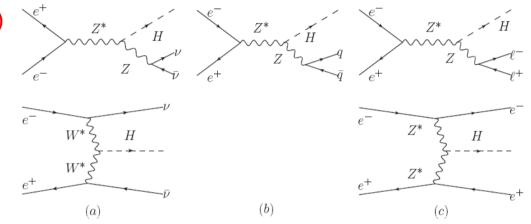
Higgs factory: Linear or Circular



	Linear: ILC, CLIC	Circular: FCC, CEPC	
Pro	C.o.M energy can be upgraded to 1-3 TeV Longitudinal polarized beam Power pulsed detector	Cost-efficient, component-mature technology Multiple interaction point High luminosity & beam quality	
Con	Expensive (\sim 8 – 10 B euros) Single interaction point, might need push-pull	Center of mass energy limited in e ⁺ e ⁻ phase (but can be upgraded to ~ 100 TeV in pp phase) No beam polarization at high energy No power pulse	

Muon & photon colliders are also possible Higgs factories, but...

CEPC


CEPC: 10 year of operation & 2 IP: 5 inv(ab) & 1 M Higgs

8 + 5 + 1 SM Higgs observables

- From 10⁶ Higgs, make following direct measurements
 - Mass, spin, $\sigma(ZH)$
 - Branching ratios (b, c, tau, g, W, Z)
 - Branching ratios (gamma, mu)

+

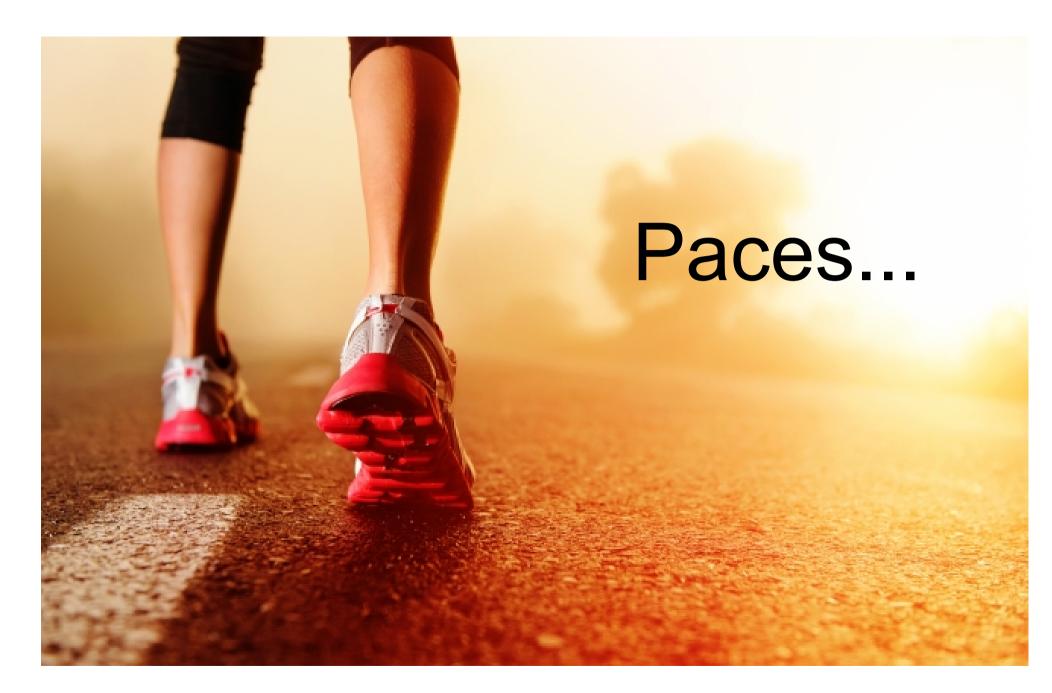
- Branching ratios (Z gamma)
- Invisible Branching ratio
- $\sigma(vvH)^*Br(H\rightarrow bb)$
- Calculate: width coupling

Mode	$b\overline{b}$	$c\overline{c}$	gg	WW^*	$\mu^+\mu^-$	$\tau^+\tau^-$	ZZ^*	$\gamma\gamma$	$\mathrm{Z}\gamma$
BR $(\%)$	57.8	2.7	8.6	21.6	0.02	6.4	2.7	0.23	0.16
	g(Hbb)	g(Hcc)	, g(Htt),	g(HWW)/Г _н	, g(Hµµ),	g(Нтт), (g(HZZ)/Г _н ,	g(HWW	/)/g(Htt)

Higgs measurement

	Absolute σ(ZH)	Absolute decay branching Ratios	Absolute Width	Direct & absolute Measurement of g(Htt) & g(HHH)
ILC	+	+	++	+
CEPC	++	++	+	-

- The adjoint Z in Higgsstralung: key to Model Independent measurements
- CEPC has no plan for energy higher than 250 GeV
 - Better measurement of $\sigma(ZH)$ and decay branching ratios (2 3 times better than ILC)
 - Measurement of the Higgs width is limited
 - Need to be measure $\sigma(ZH)^*Br(H \rightarrow ZZ)$ or $\sigma(vvH)^*Br(H \rightarrow bb)$
- ILC provides essential input of the Higgs width measurement. With CEPC, ILC can
 - Focus on higher energy runs (350, 500, 1TeV)
 - Be free of push-pull scenario


Higgs measurement

	Absolute σ(ZH)	Absolute decay branching Ratios	Absolute Width	Direct & absolute Measurement of g(Htt) & g(HHH)
ILC	+	+	++	+
CEPC	++	++	+	-
ILC + CEPC	++	++	++	++
e+e- + LHC	++	+++	++	++++
e+e- + LHC + SPPC	++	+++	++	++++

- Hadron Colliders: tag the final states
 - $\sigma(AA \rightarrow H)^*Br(H \rightarrow BB) \sim g^2(HAA)g^2(HBB)/\Gamma$
 - Huge inclusive cross section
 - 1E6 at electron-positron
 - 1E8 at LHC
 - 1E10 at CEPC hadron phase (SPPC)
 - Sensitive to rare decays, rare generation and multi-higgs processes

Z & W measurements

- Numbers:
 - e+e-: 17 M Visible Z boson at LEP & 500k at SLC;
 - Many measurements are updated from Tevatron/LHC
 - 10¹⁰ 10¹² Z can be easily produced at CEPC/FCC: efforts need to be put to control the systematics
- Observables:
 - All LEP measurements (mass, width, Weinberg angle, A_{fb} , A_{l} , R_{b} , R_{l} ...)
 - Neutrino generation: though Zγ events
 - Rare decays of Z and its daughters
 - α_s : though Ratio of 3-jet events to 2-jet events
 - W measurements (mass, width & g(ZWW))

Kick-off @ Sep 2013

CEPC Detector: Institutes

	VTX	TPC	Calo	Physics Requirement	
Theory		Tsinghua University	University of Science and Technology of China (USTC), Shanghai	Nankai University, HKSTU Pekin	Machine
	ShanDong	(THU),	Jiaotong University	University (PKU),	
	University (SDU) IHEP	University of Chinese Academic of Science (UCAS),	(SJTU), Wuhan University	Beihang University,	
		IHEP	(WhU), Nanjing University	Center China Normal University (CCNU),	
			IHEP 	IHEP 	

Establishment of theory center

Conferences...

2nd CFHEP Symposium on circular collider physics

11-15 August 2014 IHEP Asia/Shanghai timezon

Overview	Center for Future High Energy Physics, http://cfhep.ihep.ac.cn, will organize a week-long workshop on
Scientific Programme	the physics opportunities at future circular colliders in Beijing starting August 11. We are writing to invite you to participate the workshop.
Timetable	As you know, there are many physics studies on this and related topics being carried out, both from
Contribution List	domestic working groups and from the international community. As part of the Chinese effort, we are
Author index	aiming at presenting a summary report on the physics case this fall. The purpose of the August workshop is to collect available results, gather input, and prepare the ground for the report. During the
Registration	workshop, we will hear the summaries from the working groups, and perspectives from abroad.
L Registration Form	If you plan to come, we would appreciate it if you could register (website) or inform us as soon as
Local accommodation	possible.
Transportation	Organizers: Nima Arkani-Hamed, director (IAS)
Visa	Cai-Dian Lu, deputy director (IHEP)
1st CFHEP Symposium	Sally Dawson (BNL), Tao Han (U. Pittsburgh/Tsinghua U.), Hongjian He (Tsinghua U.), Michelangelo
	Mangano (CERN), Shufang Su (U. Arizona), Lian-Tao Wang (U. Chicago), Zhizhong Xing (IHEP), Jinmin Yang (ITP), Xinmin Zhang (IHEP) Shouhua Zhu (Peking U.)

Starts Aug 11, 2014 08:00 Ends Aug 15, 2014 18:00

THEP Main Building A214 19B YuquanLu, Shijingshan District, P. O. Box 918-4. Beijing, 100049, P. R. China

Go to day -

The Fourth International Workshop on Future High Energy **Circular Colliders**

12-13 September 2014

The workshop is dedicated to bring together people interested in circular high energy e+e- collider (CEPC) as a Higgs factory as well as a future circular high energy pp collider (SPPC) beyond the Higgs factory. Participants will report on the progresses made in theory, accelerator design, detector design and optimization, simulations of benchmark physics processes etc. since the CEPC-SPPC kick-off meeting in September 2013. The focus will be on the preparation for the CEPC pre-CDR. International collaboration and study organization will also be examined.

There are three CEPC working groups. If you would like to give a presentation at the CEPC workshop, please contact related group conveners listed in the following. - Accelerator Working Group: Qing Qin (qinq@ihep.ac.cn) and Jie Gao (gaoj@ihep.ac.cn) - Theory Working Group: Hongjian He (hjhe@mail.tsinghua.edu.cn) and Shouhua Zhu (shzhu@pku.edu.cn) - Physics & Detector Working Group: Yuanning Gao (gaoyn@mail.tsinghua.edu.cn) and Shan Jin (jins@ihep.ac.cn)

The workshop will be held at Shanghai Jiao Tong University (Minhang Campus) on September 12-13, 2014. Detailed information about the workshop including visa, accommodation and ground transportation etc. is also available,

Starts Sep 12, 2014 08:30 ()Ends Sep 13, 2014 18:00 Asia/Shanghai

Prof. Lou, Xinchou Prof. Yang, Haijun

Third Workshop on Future High Energy Circular Colliders

from Tuesday, March 18, 2014 at 08:30 to Wednesday, March 19, 2014 at 18:30 (Asia/Shanghai) at IHEP (C305)

Description The Program

The workshop will bring together people interested in circular high energy e+e- colliders as a Higgs factory as well as a future circular high energy pp collider beyond the Higgs factory. Participants will report on the progress made in theory, accelerator design and detector simulations since the kick-off meeting in September 2013. The focus will be on the preparation for the CEPC CDR. International collaboration and study organization will also be examined.

Steering Committee meeting will be on March 18,2014.

Tuesday, March 18, 2014

18:30 - 21:00 CEPC-SppC Steering Committee & Conveners Meeting 2h30' (B410)

Wednesday,	March 19, 2014
08:30 - 09:00	Registration 30'

```
09:00 - 10:15 Opening Session
```

```
Convener: Prof. Xinchou Lou (IHEP, Beijing)
09:00 Welcome and Introduction 30
```

- Speaker: Prof. Yifang Wang (IHEP)
- 09:30 Global Efforts for High Energy Accelerators 45' Speaker: Dr. Weiren Chou (FNAL) Material: Slides 🗐
- 10:15 10:35 Photo session and coffee break
- 10:35 12:15 Accelerator Session
 - Convener: Dr. Oing OIN (Institute of High Energy Physics) 10:35 Lattice design for CEPC 20'
 - Speaker: Ms. Huiping Geng (Institute of High Energy Physics) Material: Slides 🗐
 - 10:55 Final focus design for CEPC 20' Speaker: Dr. Dou Wang (IHEP) Material: Slides 🗐
 - 11:15 Beam-beam simulations for CEPC 20' Speaker: Mr. Yuan Zhang (IHEP, Beijing) Material: Slides 🗐

11:35 CDR Discussion 20

1st CFHEP Symposium on circular collider physics

23-25 February 2014

IHEP Asia.

/Shanghai	timezone	
-----------	----------	--

Overview	The Center for Future High Energy Physics (CFHEP), hosted by Institute of High Energy Physics, will
Scientific Programme	start its activities in Feb. 2014. CFHEP will dedicate its efforts to carrying out detailed studies on both the physics case and the design of the possible future colliders. The immediate focus will be on an
Timetable	electron-positron Higgs factory and a high energy proton-proton collider, based on a circular tunnel. More information regarding CFHEP can be found at http://cfhep.ihep.ac.cn.
Contribution List	More miorination regarding or their can be found at http://onop.incp.ac.on.
Author index	This symposium is the kick-off meeting for CFHEP. There will be a day of public events on Feb 23, highlighting new physics opportunities after the discovery of the Higgs. It will feature a panel discussion
Registration	at Tsinghua University with panelists Nima Arkani-Hamed, David Gross, Gerard 't Hooft, Joseph Incandela, Luciano Maiani, Hitoshi Murayama, Yifang Wang and Edward Witten, moderated by Shing-
Registration Form	Tung Yau, on the topic of "After the Higgs Discovery: Where is Fundamental Physics Going?".
List of registrants	A two-day workshop (Feb 24 - 25) will then be held at IHEP, focusing on the physics case for future
Accommodation	circular colliders, as well as discussions on how to synchronize the domestic theoretical particle physics effort with the planning and designing of future circular machines.
Travel	
Visa	The registration fee is 500 RMB, exclusive of board and lodging. The registration fee must be paid in Chinese RMB at the registration desk on-site. Please note that the credit card payment cannot be
	accepted.

15

Regular meetings, communications

Home Create event - Help -

Home » 所外区 (Open Zone) » CEPC » Physics and Detector Meetings

Physics and Detector Meetings

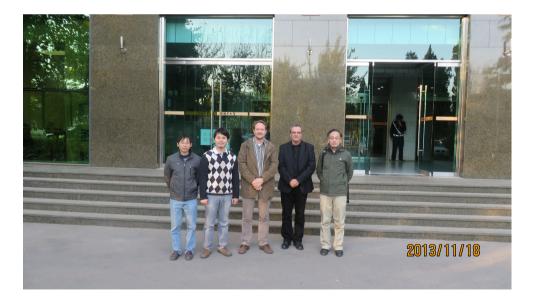
Managers: LI, G.; Li, Q.

There are 11 events in the future. Show them.

September 2014

- 24 Sep CEPC physics+detector regular meeting
- 17 Sep Simulation & Physics Analysis Meeting
- 05 Sep CEPC physics+detector regular meeting
- 05 Sep CEPC Calorimeter Group Meeting (protected) (New!
- 01 Sep Simulation & Physics Analysis Meeting

August 2014


- 27 Aug CEPC physics+detector regular meeting
- 27 Aug CEPC VTX group meeting (protected)
- 20 Aug Simulation & Physics Analysis Meeting
- 13 Aug CEPC physics+detector regular meeting
 - & Physics Analysis Meeting

There are 74 events in the *past*. Show tem.

ome Create event 🔻 Help 🔫	
ome » 所外区 (Open Zone) » CEPC	
CEPC	Go to parent category View
	ı, M.; QI, H.; Wang, D.; Geng, H.; Wang, D.; Wang, F.; wang, M.
	ı, M.; QI, H.; Wang, D.; Geng, H.; Wang, D.; Wang, F.; wang, M.
Managers: WEN, S.; Zhu, H.; Yang, H.; Hu, T.; Ruar Accelerator Meetings 6 events	n, M.; QI, H.; Wang, D.; Geng, H.; Wang, D.; Wang, F.; wang, M.
Managers: WEN, S.; Zhu, H.; Yang, H.; Hu, T.; Ruar Accelerator Meetings 6 events General Meetings 2 events	n, M.; QI, H.; Wang, D.; Geng, H.; Wang, D.; Wang, F.; wang, M.

Asia/Shanghai -

English -

9/9/2014

Circular Electron Positron Collider

Future High Energy Circular Colliders

The Standard Model (SM) of particle physics can describe the strong, weak and electromagnetic interactions under the framework of quantum gauge field theory. The theoretical predictions of SM are in excellent agreement with the past experimental measurements. Especially the 2013 Nobel Prize in physics was awarded to F. Englert and P. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider".

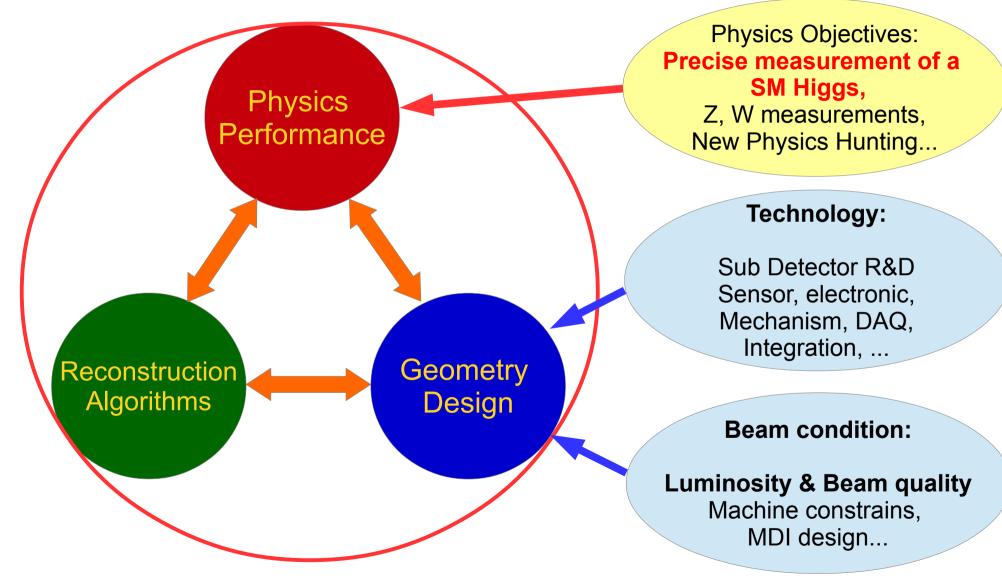
After the discovery of the Higgs particle, it is natural to measure its properties as precise as possible, including mass, spin, CP nature, couplings, and etc., at the current running Large Hadron Collider (LHC) and future electron positron colliders, e.g. the International Linear Collider (ILC). The low Higgs mass of ~125 GeV makes possible a Circular Electron Positron Collider (CEPC) as a Higgs Factory, which has the advantage of higher luminosity to cost ratio and the potential to be upgraded to a proton-proton collider to reach unprecedented high energy and discover New Physics.

Panel Discussion on Fundamental Physics

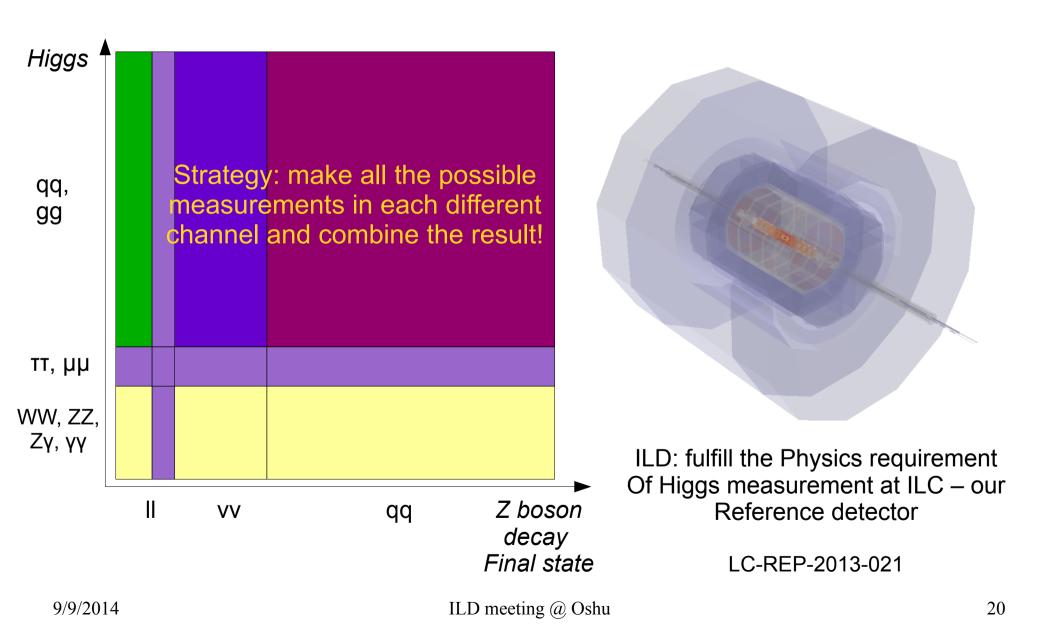
http://cepc.ihep.ac.cn/

عربي

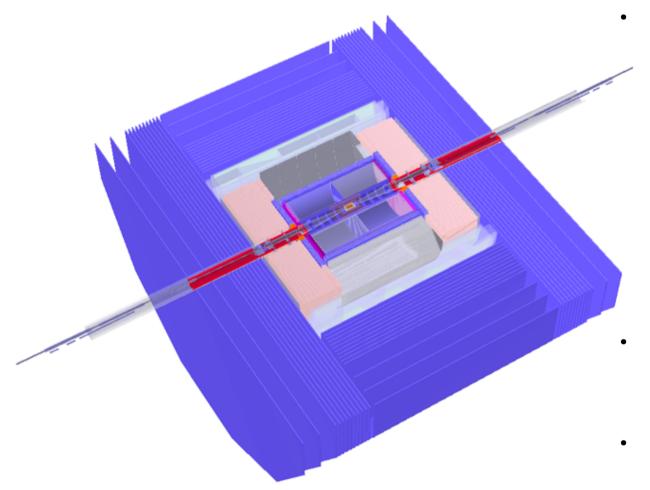
China plans super collider


Proposals for two accelerators could see country become collider capital of the world.

Elizabeth Gibney


22 July 2014

🖄 PDF 🛛 🔍 Rights & Permissions


Detector design: Basic ingredients

ZH event: requirement on detector

An example design: ILD \rightarrow X_v0 (?)

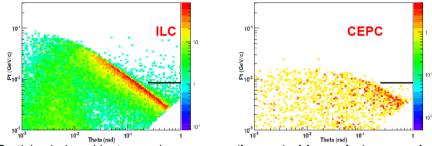
- Geometry changes
 - TPC Radius 1808 \rightarrow 1365 mm (?)
 - TPC Half Z 2350 \rightarrow 1900 mm (?)
 - HCAL Layer Num: $48 \rightarrow 40$ (?)
 - ECAL Layer Num: $30 \rightarrow 16$ (?)
 - ECAL/HCAL Cell Size: 5/10 mm \rightarrow 20 mm (?)
 - B Field: $3.5 \text{ T} \rightarrow 3 \text{ T}$ (?)
 - L*: 3.5 m \rightarrow 1.5 m
- Validation:
 - How much luminosity we can achieve with L* = 1.5 m
- Simulation: Geometry implemented

All Changes need to be implemented into simulation, iterate with physics analysis (Fast – Full Simulation) and cost estimation...

organization

- physics and detector WG: GAO Yuanning (THU), JIN Shan (IHEP)
- sub-groups
 - physics analysis and optimization: RUAN Manqi (IHEP), WANG Dayong (PKU)
 - vertexing: OUYANG Qun (IHEP), WANG Meng (SDU)
 - with silicon tracking: TU Yanjun (HKU), ZHU Hongbo (IHEP)
 - tracking: LI Yulan (THU), QI Huirong (IHEP)
 - calorimetry and muon:
 HU Tao (IHEP), YANG Haijun (SJTU)
- civil construction: ZHAO Jingwei (IHEP)

Wang M. (王萌)

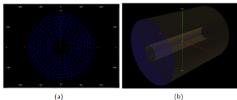

4

22

Sub detector groups: VTX & TPC

Radiation Background

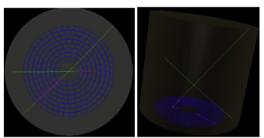
- beam induced background imposes large impacts on detector design (e.g. detector occupancies, radiation damage, etc.)
- may degrade detector performance (additional noise in finding tracks/vertices)
- Guinea-Pig (beam-beam interaction simulation) + Geant4 •



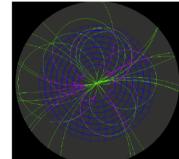
Particles induced by two main processes (beamstrahlung photons + pair production) for ILC and CEPC. The black line indicates the polar angle coverage of the vertex detector \rightarrow **Do we have much less background?**

Wang M. (王萌)

LD TPC endplate


- half 7: 2200 mm
- inner radius: 329 mm
- outer radius: 1808 mm
- pad pitch: ~ 1.2 mm, height: 5.6 mm

(a)


 $e^+e^- \rightarrow \mu^+\mu^-\nu_e\bar{\nu}_e$

Wang M. (王萌)

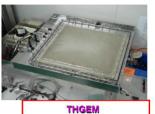
 $e^+e^- \rightarrow W^+W^-$

 $e^+e^- \rightarrow HZ$

0.35 0.3 $V_{GEM} = 260V; V_{Deff} = 123.5V/cm$ 0.25 V_{CEM}= 265V; V_{Drift} = 145.2V/cm mm 0.2 0.15 0.1 0.05 450 100 Drift distance [mm

MDI design: key issue for CEPC detector

Fujii San visited us last month, giving lecture on TPC Physics


21

Sub detector: Calo & Muon

layout of Calo pre-CDR 1st draft is circulating

- Introduction and general layout to calorimeters
- ECAL for Particle Flow Approach
 - Scintillator Tungsten Sandwich WANG Zhigang (IHEP)
 - Silicon Tungsten Sandwich Jean Claude Brient, Vincent Boudry (IN2P3)
- HCAL for Particle Flow Approach
 - SDHCAL (RPCs) HAN Ran (NCEPU), Imad LAKTINEH (IPNL)
 - DHCAL (RPCs) XIA Lei (ANL/SJTU)
 - DHCAL (ThGEM) YU Boxiang (IHEP)
- Muon system XIE Yuguang (IHEP)
- Calorimeter Calibration and Alignment (included in sub-detector option)
- Front-End Readout System (included in sub-detector option)
- Power and Cooling System (included in sub-detector option)
- Cost Estimation (included in sub-detector option)

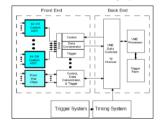
about DHCAL (ThGEM)

10⁵ gain in single-THGEM

structure (absorbers)

STANDARD GEM 10³ GAIN IN SINGLE GEM

- Introduction


Content

٠

- Digital Hadronic Gas Calorimeter
- The Active Layers
- Energy Reconstruction & Calibration
- Digital readout system
- Cost of THGEM DHCAL
- Reference

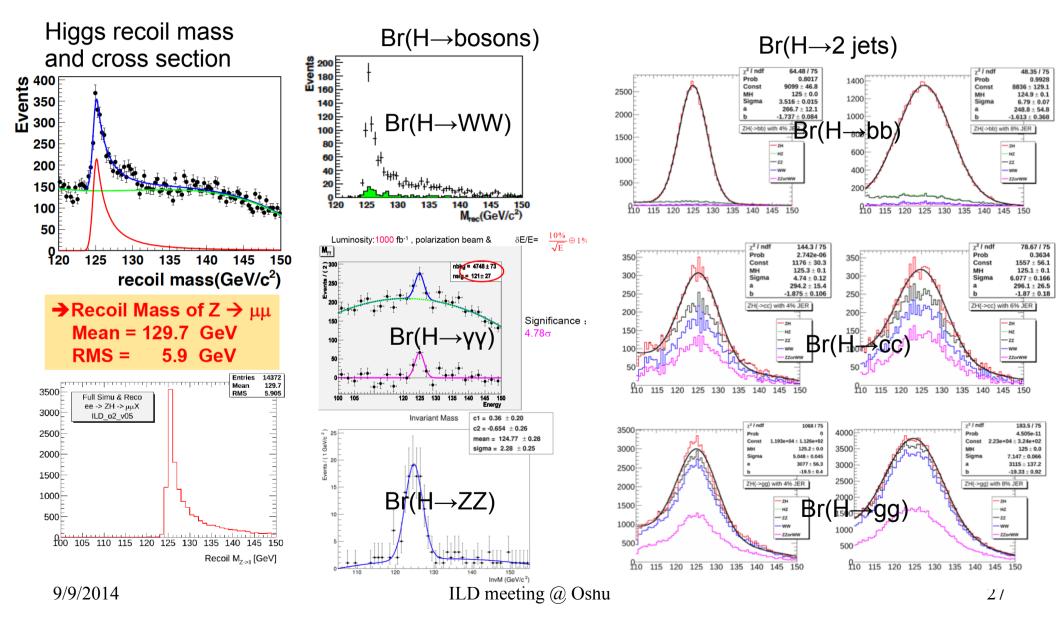
Content	Unit cost	Total require	Total cost
THGEM	0.8 yuan/cm ²	50 M cm ²	¥ 40 M
Electronics	8 yuan/channel	50 M channel	¥ 400 M
Absorber	30 k yuan/ton	1200 ton	¥ 36 M
total			¥ 476 M

Wang M. (王萌)

Wang M.(王萌)

About simulation

- A dedicated Geant4-Mokka training had been held last month
 - http://indico.ihep.ac.cn/conferenceDisplay.py?confld=4287
- In principle, we can edit the geometry at src code level & maintain the database
- Many Thanks to Emilia (Becheva) and LLR!


Simulation & Analysis

	CEPC @ 5 ab ⁻¹	Current Status	Responsable & perspective
mH (Model Independent)	8 MeV	12 MeV (μμΗ)	IHEP, CCNU
σ(ZH)	0.7 %	1.2 %	IHEP, CCNU
Higgs CP		Theoretically Investigated	THU, HKU
Δ(σ*Br)/(σ*Br)			
ZH, H→bb	0.4%	0.22% (qqH channel)	SJTU, IHEP
H→cc	2.1%	2.2 – 2.8%	SJTU, IHEP
H→gg	1.8%	1.8 – 2.4%	SJTU, IHEP
H→WW*	1.3%	2.9% (µµH)	IHEP, PKU
Н⊸тт	1.2%	Efforts initialized	IHEP, USTC
H→ZZ*	5.1%	~ 4%	SDU
Н→үү	8%	~ 12% (vvH)	WhU, IHEP
H→µµ	?		UCAS, IHEP
H→Inv.	0.3%		IHEP, HKU, HKUST
vvH, H→bb	3.8%		PKU, IHEP

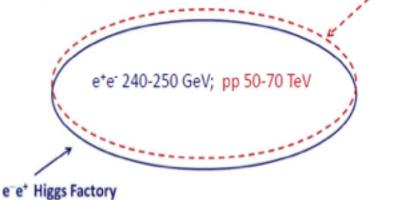
Optimistic Perspective By the end of 2014 9/9/2014

To be validated by Full Simulation

Some analysis on Higgs measurements

Lots of questions on detector design/optimization

- Power pulsing: •
 - Active Cooling, or smaller granularity
 - Low power consumption electronic design & DAQ system design
- MDI design: •
 - Smaller L*
 - **B-Field Shielding? Radiation Protection of QD0?**
- Sub detector technologies (for example silicon...) and prototype oblistruction
 Along the full simulation/reconstruction chain
 Dedicated fast simulation tool
 Reconstruction algorithm optimization
 Generic analysis framework... •
- Arrangement of computing resource, development of future software • framework...


Summary

- ILC & CEPC: highly complementary electron-positron project
 - Physics program
 - Technology development
- CEPC: 2 year's anniversary
 - People gathered, studies initialized, substantial progress for all three groups
 - Big exercise for the whole community
 - Working toward pre-CDR
- Cooperations are needed:
 - International cooperations is indispensable, please contact us

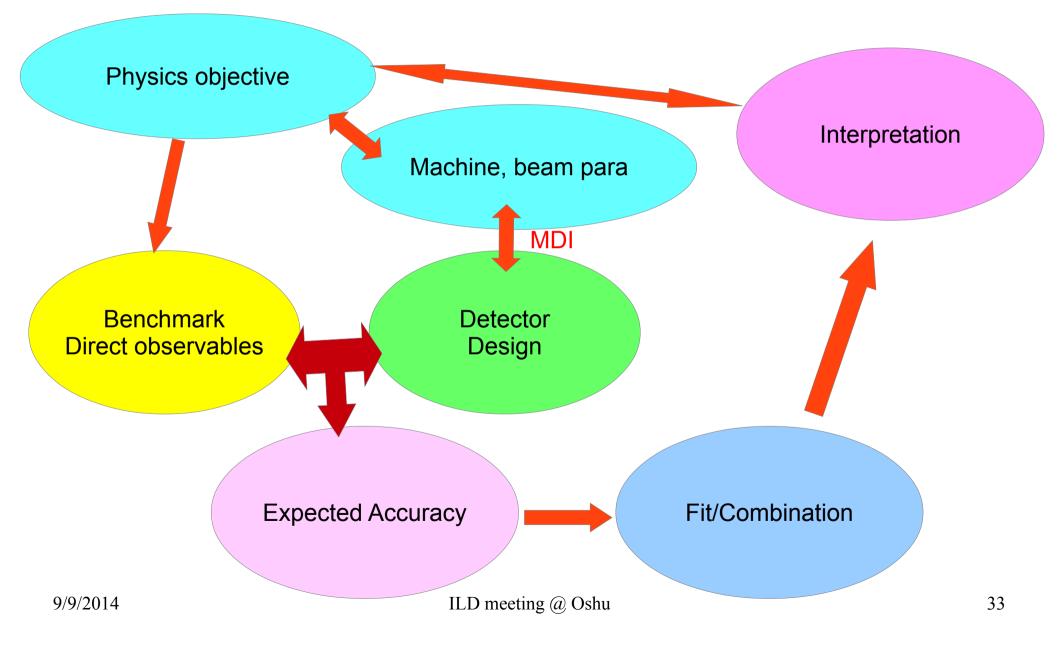
CEPC+SppC

- We are looking for a machine after BEPCII
- A circular Higgs factory fits our strategic needs in terms of timing, science goal, technological & economical scale, manpower reality, etc.
- Its life can be extended to a pp collider: great for the future

Circular Higgs factory (phase I) + super pp collider
 (phase II) in the same tunnel
 pp collider

- Circular Higgs factory is complementary to ILC
 - Push-pull option
 - Low energy vs high energy

We hope to collaborate with anyone who is willing to host this machine. Even if the machine is not built in China, the process will help us to build the HEP in China


My feeling

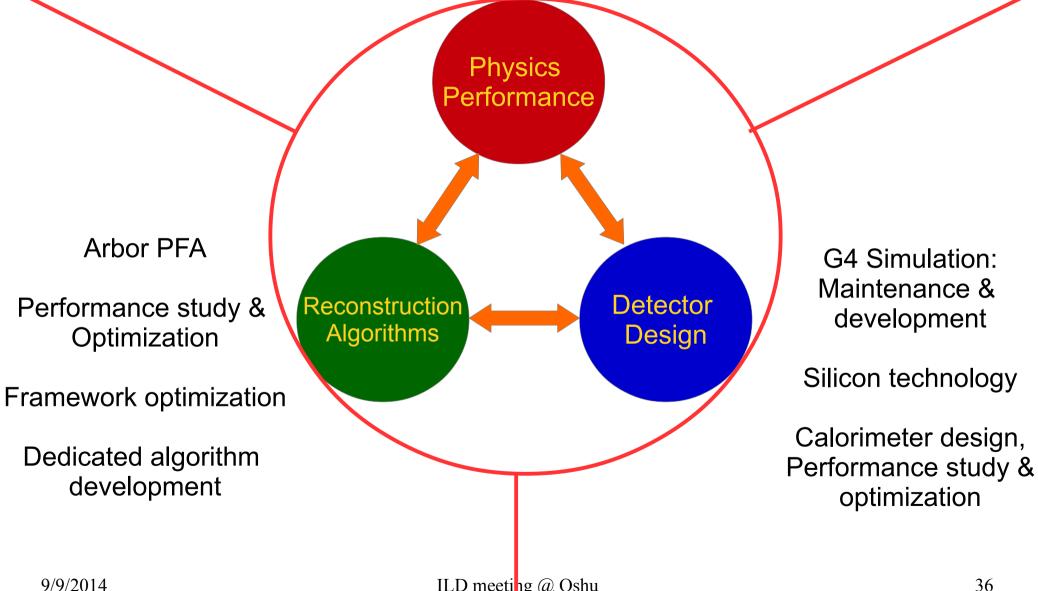
- For a very long time, China played a small role in high energy physics, and the whole fundamental research
- CEPC is the project, with which China can make her contribution to the fundamental research, adequate to her economical size
- Big exercise, we need to
 - Build our team
 - Develop needed technologies

International cooperation is indispensable

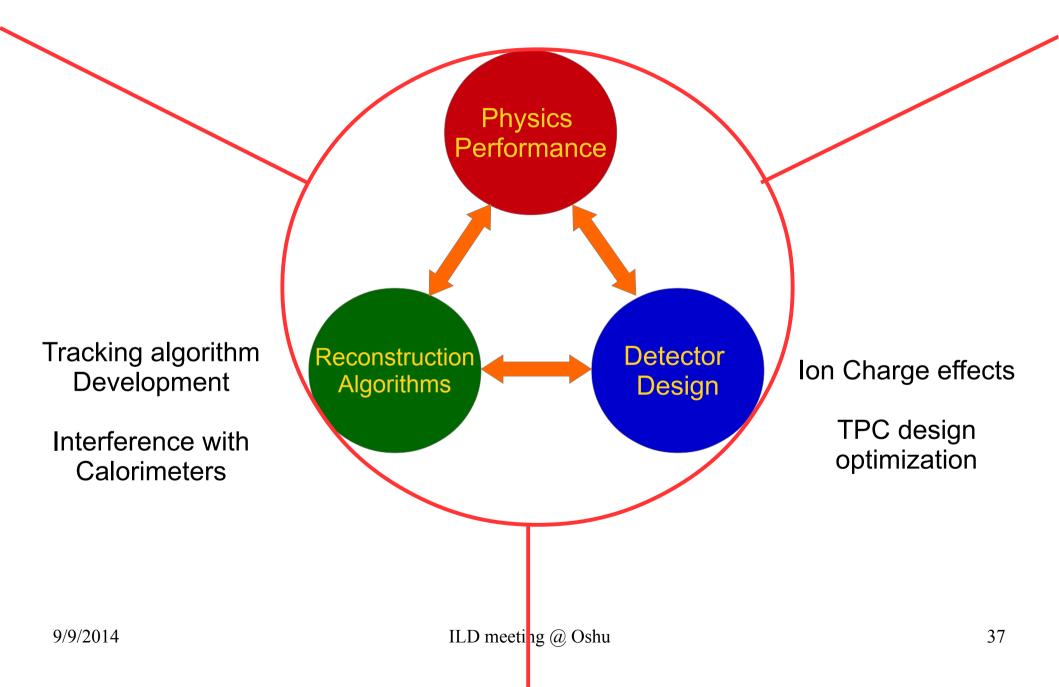
• No matter where the future goes, China will have stronger participants with these people & experience


Demonstration of Physics potential

Key technology


		Cooperation	Comments
BeamBk & MDI	GunieaPig, etc	?	Need iterate with Acc group
Generator	Madgraph		Very limited manpower
	Whizard	In contact with author	Validation phase
	Geant 4 - Mokka		Relatively strongly supported
Simulation	Delphes		Very limited manpower
	Dedicated cepc	author	Using Ideal PFA approach
	Tracking		Optimization phase, man
Reconstruction	PFA		power consumer
	Flavor Tagging		Validation phase
Analysis	Key channels	-	Waiting for full - reco sample
	Combination	Author, adjusting	
Computing	Distributed		Tested, adjusting to cepc
Software Framework			Initialized, to understand, follow recent development
9/9/2014		ILD meeting @ Oshu	34

Franco-Chine Cooperations: with LLR & Saclay



Model independent Higgs measurements though HZ, Z->2j events

 $Br(H \rightarrow 2\gamma)$ measurements, Higgs CP measurements, etc.

Higgs Invisible Decay Branching ratio, Neutrino Generation, Rare decay of Z

Pre-CDR: layout of simulation part

- X.1: Introduction to Physics Motivation
- X.2: A brief description of the detector
 - ILD & cepc_v0
- X.3: Higgs Measurements
 - Overview
 - Measurement through the recoil mass spectrum
 - Measurement through final state tagging
 - Summary (Interpretation)
- X.4: W & Z
 - Z pole, Neutrino Generation
 - W mass, width & Triplet Gauge Coupling
- X.5: Discussion on Detector Optimization
- X.6: Complementary with other projects
- X.7: Summary