# Detector Optimisation and Physics

ILD Meeting
Oshu City, Sept. 7,2014
J.List

## Goals of further Simulation Studies

### Open physics case questions

- High-level perspective
- Ultimate luminosity requirements
- Polarisation sharing
- Not yet (fully) demonstrated key measurements
- => interplay with running strategy & accelerator & detectors

# Detector issues not yet studied (sufficiently)

- Calibration & alignment
  - => need for Z pole running?
  - => machine implications!
- Systematic uncertainties
- PID, low momentum particles...

# Detector cost justification (reduction?)

- shrink overall size
- Ecal technology
- Why a TPC?

**—** ...

### Change requests from machine

- $L^* = 4.4 \text{ m} -> 4.0 \text{ m}$ ?
- Crossing angle 14mrad -> 10mrad ?
- => cf Yokoya-San's presentation & MDI session

# What we need to agree on

- New detector models
  - Cheaper
  - $L^* = 4m$ ?
- Detector level performance benchmarks
  - incl. sofar uncovered aspects
- Physics level performance benchmarks
  - Incl. systematic uncertainties

- Important physics case questions
  - To be answered independently of detector optimisation
- Required "helper studies":
  - Calibration
  - Alignment
  - Systematic uncertainties

## Physics Case - Overview

This is the key
for realising the ILC!
Need answers on the same topics,
but from a higher-level perspective

- Higgs
  - Mass (250 GeV ... ->)
  - Couplings to W,Z,f (250 GeV >)
  - Self-coupling (500 GeV ->)
  - CP properties (250 GeV -> )
- Top
  - Mass (350 GeV)
  - EW couplings (400 GeV -> )
  - ttH (500 GeV ->

- Direct BSM (250 GeV... ->)
  - WIMPs in mono-photons
  - Natural SUSY: light Higgsinos
  - Low ΔM new particles
  - **—** ...
- Z
  - ALR (91 GeV)
  - Mass ? (91 GeV)
- W
  - Mass (500 GeV -> )
  - TGCs, QGCs (250->

Detailed detector requirements of these topics of also talks at ILD meeting 2013 in Krakow!

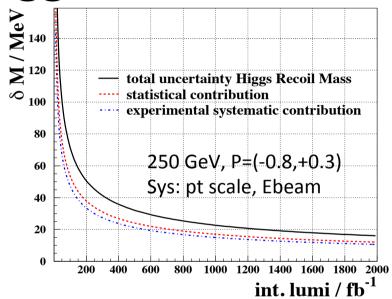
## Distributing Luminosity & Polarisation

- Sofar, we "overbooked" run time since every analysis picked just their favourite energy & polarisation configuration
- Need to know for every analysis:

# Luminosity sharing between helicities:

- What is the optimal sharing between (-+,+-,++,--)?
- What is the "price" for deviating from this?
  - -> results for all 4 settings

At which integrated luminosity do we become systematics limited?


- Theory
- Parametric
- Experimentally
  - -> will need dedicated studies!

# Taking a "higher-level perspective" Example: Higgs Mass

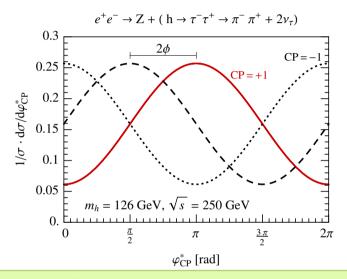
### How precisely do we need $m_H$ ?

- $\Gamma(H->X) \sim g_X^2 * phase space$
- Phase space depends on m<sub>H</sub> especially for H->WW\* / ZZ\*
- Current estimate: δm<sub>H</sub> = 200 MeV
   => parametric uncertainty of
   2.2% on Γ(H->WW\*)
   2.5% on Γ(H->ZZ\*)
- Acceptable parametric uncertainty?

| δΓ <sup>para</sup> | δm <sub>H</sub> | Lumi [fb <sup>-1</sup> ] |  |
|--------------------|-----------------|--------------------------|--|
| 1%                 | 80 MeV          | 75                       |  |
| 0.5%               | 40 MeV          | 300                      |  |
| 0.25%              | 20 MeV          | 1200 (!!!)               |  |



### If <0.5% required, investigate


- Contribution from leptonic recoil at higher ECM
  - -> tracking performance!!!
- Kinematic reconstruction H->bb, H->WW? ....?

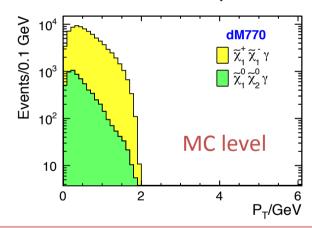
# Uncovered Physics Case Studies Ex: Higgs CP properties

# CP properties of Higgs-fermion coupling from $H->\tau^+\tau^-$

- Exploit  $\tau\tau$  spin correlation, eg  $\tau$ -> $\rho\nu$ ,  $\pi\nu$ ,  $a_1\nu$ .. other  $\tau$ -> $l\nu\nu$
- Very hard at LHC, theory study  $\delta \phi_{\tau} = 14^{\circ}$  for  $300 \text{fb}^{-1}$
- ILC: Last experimental study (SimDet): Desch, Was, Worek '03
- Recent theory study: S.Berge etal,
   Phys.Lett. B727 (2013) 488-495:

 $\delta \phi_{\tau} = 2.8^{\circ} \text{ for } 1 \text{ab}^{-1} @ 250 \text{ GeV}$ 



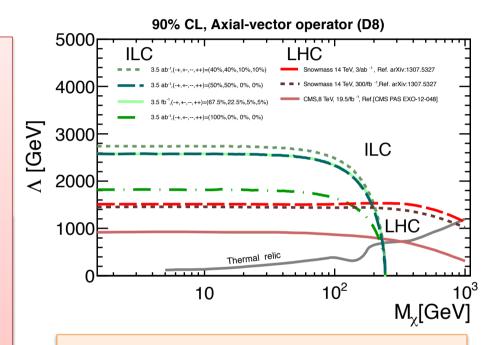

### To study:

- Other ECM?
- Pair & γγ backgrounds
- $\pi^0$  reconstruction
- Exclusive τ decay reconstruction
- Impact parameter resolution
- Momentum resolution

# Not fully demonstrated Physics Case Ex: low $\Delta M$ New Physics

- unique discovery potential for the ILC, complementary to LHC
- Famous example: natural SUSY -> light, neardegenerate Higgsinos
- Feasibility study in SGV showed ability to constrain multi-TeV SUSY-parameters

- But short cutting:
  - Particle IP
  - γγ->hadrons overlay
  - Fake tracks from pairs




### Requires:

- stand-alone Si tracking with low number of fakes
- PID for < 2 GeV, vertexing / impact parameter,  $\pi^0$  reconstruction
- Excellent hermeticity and γ energy resolution

# Second Example – Dark Matter

- unique discovery potential for the ILC, complementary to LHC
- Reinterpretation of (pre-)Lol study
- Detector & machine issues:
  - Bhabha suppressionhermeticityL\* / crossing angle
  - Photon energy resolution
  - Fwd tracking
  - Fake tracks, γγ->hadrons



### Systematic uncertainties:

- very important
- $dP, dE_{CM}, dL/dE_{CM}$
- Fake tracks
- Photon efficiciency, energy scale

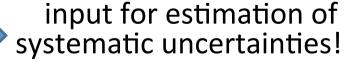
## From Physics to Detector Optimisation

- 1-1 relation between physics measurement and one specific detector performance aspect is *rare*
- For precision measurements, control of systematics might pose the most critical detector requirements [eg top threshold mass: control of dL/dE<sub>CM</sub>-> Bhabha's -> LumiCal, fwd tracking, ... ]

=> optimise not just for statistical uncertainties, but also for calibration & control of systematics!

- Eg: Jet energy scale uncertainty vs jet energy resolution
- -> scale calibration for individual particles, neutral hadron fraction, gluon splitting, fragmentation, ...

## Physics & Systematic Uncertainties


- We know the *statistical* uncertainties for many important physics studies
  - -> fine for > O (few percent) precision <
- In many cases, we aim far beyond: eg  $\delta^{\text{stat}}$ BR (H->bb) < 1%
- Here, our purely statistical uncertainties are not convincing!
- need to include systematics in physics case and detector optimisation, both theoretical/parametric and experimental, eg:
  - Momentum / energy scales
  - Flavour tag, gluon splitting -> bb / cc, ...
  - Parton Shower: currently LO ME + PS this is not state of the art! & Fragmentation, hadronisation, neutral hadron fraction, ...
  - Luminosity,  $E_{CM}$ , Polarisation, but also  $dL/dE_{CM}$



Need appropriate simulation & reconstruction tools, and "control benchmarks", eg determination of dL/dE<sub>CM</sub>

# Calibration & Alignment

- Which precisions can be achieved?
  - Tracker momentum scale?
  - Calorimeter scales for different (neutral) particles
  - Jet energy scale
  - L, E, P incl. dL/dE
  - **—** ...
- And on which time scales?
  - Ultimate long-term?
  - For one push-pull period?
  - **—** ...



- How much Z pole data do we need for that?
- And how often?
  - Once a year?
  - After every push-pull?
  - **—** ...



requirement for accelerator design!

# Optimisation benchmarks – Detector Level

- Hermeticity:
  - for high E (>90% $E_{beam}$ ?)  $e^{+-}/\gamma$
  - for "normal" e,  $\mu$ ,  $\gamma$ ,  $\pi$ , n
- Calorimeters:
  - Jet energy resolution, including 5 < E<sub>iet</sub> < 50 GeV</li>
  - Photon energy & angle resolution
  - Bhabha reconstruction
- Tracking system:
  - Efficiency, fake rate
  - $-\sigma(1/p_t), \sigma_{IP}$
  - Vertex efficiency, resolution
  - Jet charge
  - Flavour tag

- Low momentum particles  $(p_t = 0.1....2 \text{ GeV})$ :
  - Tracking efficiency,  $\sigma(1/p_t)$ ,  $\sigma_{IP}$
  - Calorimeter detection efficiency
- Particle ID (dE/dx & calo)
  - $e/μ/π^{+-}/p/K/n/π^{0}/γ$
  - Low p<sub>+</sub> and "normal"
  - Particle ID in jets
- Exclusive decay mode reconstruction:
  - τ leptons
  - B, D hadrons
    - + "control benchmarks":
      - LEP, dL/dE
      - gluon splitting g->bb?
      - ....

# Detector Optimisation and E<sub>CM</sub> - what will be replaced when?

- Vertex detector:
  - exchange "frequently"?
  - Can optimise now for initial energy (250...350 GeV)
  - Late technology decision: Extrapolate more agressively for physics case studies, in particular for 500 GeV, 1 TeV
- SIT, FTD:
  - replace for 1 TeV upgrade?
  - Optimise for 500 GeV
- ECal / HCal granularity:
  - Long time scales -> less extrapolation
  - Optimise for at least 500 GeV

- Coil radius:
  - Never ever?
  - Optimise for 1 TeV
  - => TPC radius, ECal, HCal depth
- Same for TPC length
- LumiCal, LHCal, BeamCal?
- SET?

### For Physics Case:

one detector simulation model sufficient in view of limited person power

# Optimisation benchmarks Physics Level – a suggestion

### m<sub>H</sub> from ee->vvH->vvbb

- JER
- π<sup>0</sup> reconstruction
- b-tag, I in jet, excl. B decays
- JES, b-tag, had., frag, neutral hadrons fraction uncertainties

Similar, but for "light jets": m<sub>w</sub> from ee->evW->evqq

### A<sub>FB</sub> (top)

- JER, lepton ID, b-tag
- Jet charge, excl. B-decays,

### **Higgs CP properties H->ττ**

- τ reconstruction
- PID, Exclusive decay modes
- momentum & impact parameter

### **Near-degenerate Higgsinos**

- Reco of low momentum particles
- Fake tracks
- PID, Exclusive decay modes
- Hermeticity
- Low and high-energy photon energy & angle resolution

#### **Mono-photon WIMPs**

Photon energy resolution & scale, hermeticity, suppression of Bhabhas, dL/dE<sub>CM</sub>

## Balance manpower

Address remaining
Physics Case
question



Justify most important detector design choices



ILD needs to agree on a balanced choice of priorities!

### Conclusions

#### lots of studies to be done

- Cost / technology justification
- Change requests from machine
- Quantifying our calibration needs
- Missing physics case arguments

many more performance aspects than we focussed on so far – some of them make TPC case?

- Low momentum particles
- Particle ID
- Jet charge, ....
- Systematic uncertainties

#### Suggestion:

- Get together a small group of people to prepare a more precise proposal for a prioritised list of studies, both for physics case and detector optimisation on a short timescale
- Maybe start with an informal gathering after end of sessions today?

# Backup

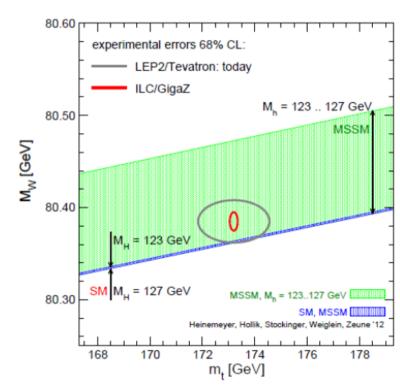
# Strategy Proposal

#### Detector-level performance

- Efficiencies, resolutions etc
- Study for O(3-4) detector models in full simulation

#### **Example: Particle ID**

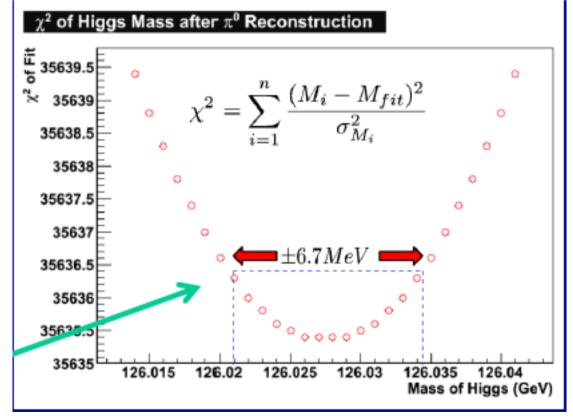
- Determine actual capabilities in FullSim
- Study impact on analyses by varying PID efficiencies & fake rates in SGV


### Physics performance

- ILD\_o1 full simulation: reference analysis
- Where ever possible: determine relative impact of
  - efficiencies
  - resolutions
  - systematic uncertainties

in SGV or cheated full sim

# Physics Case - M<sub>W</sub>


- m<sub>H</sub>, m<sub>W</sub> and <sub>mt</sub> provide crucial SM closure test
- Classic for ultra-precise (few MeV) m<sub>w</sub>: threshold scan
- Needs lot's of data at 161 GeV
- Interesting alternative: hadronic mass in ee->evW->evqq
- Decisive systematics: momentum scale and calorimeter energy scale for single particles



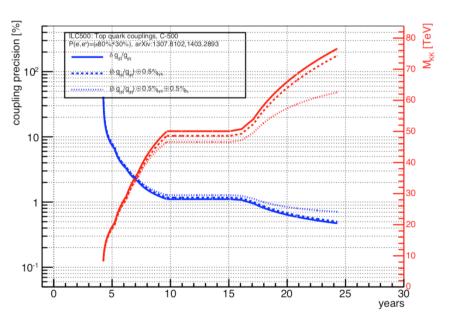
Cf Graham's talk eg at ILD meeting 2013 in Krakow

# Physics Case – M<sub>H</sub> fromH -> bb

- Cf Graham's talk at ILD meeting 2013 in Krakow
- Very competetive!
- Systematics?



# Physics Case – Top Couplings


• Precision measurement of ew top couplings can constrain

multi-TeV new physics

• Requires:  $\sigma(tt)$  and  $A_{FB}$  (top)

- The major open detector issue:
  - B-jet charge reconstruction!
- Systematics:
  - Beam polarisation precision (A<sub>FB</sub>)
  - Luminosity ( $\sigma(tt)$ )
  - b-tagging, R<sub>b.</sub> g->bb?
  - **–** ....





# Polarisation split

- "Simulataneous" collection of data with all 4 helicity configurations is essential to minimize systematic uncertainties, eg from
  - Time-dependent detector efficiencies, calibration, alignment etc
  - Luminosity, beam energy and polarisation measurements
- Thus: fast helicity reversal with frequency chosen to obtain a preset "mix" of helicity configurations (sign(P(e-)), sign (P(e+))):

| ECM     | -+ [%] | +- [%] | ++ [%] | [%] | Phys. driver      |
|---------|--------|--------|--------|-----|-------------------|
| 250 GeV | 67.5   | 22.5   | 5      | 5   | ZH                |
| 350 GeV | 67.5   | 22.5   | 5      | 5   | M_t               |
| 500 GeV | 40     | 40     | 10     | 10  | t coup / DM / TGC |
| 1 TeV   | 40     | 40     | 10     | 10  | H / DM / TGC      |
| 90 GeV  | 40     | 40     | 10     | 10  | A_LR              |
| 160 GeV | 78     | 17     | 2.5    | 2.5 | M_W               |

23