(Some thoughts/reminders on) Calibration/alignment scenarios for ILD/ILC

Jan Timmermans – NIKHEF Amsterdam

Initial requirements on tracking

- Lightweight, but stiff detectors
- Stable to electric and magnetic fields (in particular gas tracking)
- Robust against temperature and humidity gradients/variations
- Precise alignment of (sub)detectors

Particular conditions:

- Power pulsing
- Push-pull of the two detectors

Temperature "policy" ?

- Probably every sub-detector needs cooling
- Working temperatures likely different, with gradients
- Are sub-detectors thermally neutral?
 - Likely not
 - Should they be?
 - Would they need thermal shield?
- TPC might need a thermal shield if external temperature gradients

Initial and track-based alignment

- Si tracking sensors positioned inside module $\approx 5 \mu m$
- Modules positioned into higher order structures and surveyed/aligned at ≈100 µm
- Pad positions inside TPC pad plane at <20 μm
- Module positions inside TPC endplate (for current LP) $\approx\!20~\mu m$
- Track based alignment precision needed:
 - VTX: ≈2 μm
 - Si inner: ≈4 μm, Si outer: ≈6 μm
 - TPC: ≈20 μm

This ensures degradation of momentum resolution due to alignement errors w.r.t. nominal of less than 5%

Track samples

- Cosmics, but rate limited:
 - Underground
 - Duty cycle 0.5-1 % due to power pulsing
- Beam collision data: tracks with known momentum from Z, J/ψ , Y.
 - Z-peak running @ L = 10^{32} cm⁻²s⁻¹:
 - 30k hadronic and 1.5k $\mu\mu$ per 1 pb^{-1}

(takes \approx 3 hours of beam)

- LEP experience:
 - 10 pb⁻¹ Z running for commissiioning (30 hours of beam)
 - 1 pb⁻¹ per year (depending on "interventions"; 0.5 pb⁻¹ per case

But could need more e.g. TPC has more (smaller) modules than at LEP. Need for alignment simulation study.

Vertex Detector

- Supported by beam pipe, which is supported by the inner support tube
- During assembly: micron precise prealignment via optical survey
- After installation: beam based alignment
 - Within a layer using overlap between ladders (of few 100 $\mu m)$
 - Global alignment of layers

Si tracker

- Internal hardware alignment of microstrip tracker uses infrared lasers passing through consecutive layers: relative resolution (between measurements) of 10 µm within 1 min
- Deformations/displacements and temperature/humidity monitoring through in-fiber Bragg grating (FBG) sensors, embedded in composite materials ("smart structures")
- Frequency Scanning Interferometry under investigation
- Track-based alignment:
 - Total number of degrees-of-freedom: ~10⁵
 - For quick re-alignment: if sensor positions within modules known @ 5µm: ndof = $\sim 10^4$ -5.10⁴
 - If only sub-detectors need to be re-aligned: ndof = 26

TPC calibration issues

Need:

- Good B-field map, 1-2 G precision and sufficient number of points (> 10⁴ locations)
- Hall probes mounted around TPC; NMR probes?
- UV lasers:
 - generating ionising tracks in drift volume
 - illuminate the calibration spots on the cathode, which then generate electrons drifting over full length
- Cosmics: duty cycle 0.5%, would give ≈10 Hz through hor. cut plane through TPC of 14 m² at surface; less rate underground
- Z-peak running: 10 pb⁻¹ commissioning; 0.5-1 pb⁻¹ for quick realignment check after "incidents" (e.g. Push-pull)

Example: distortions in LP TPC

- Tracks in 3 DESY GEM modules
- Distortions at module boundaries largely corrected; distortions should be less at final TPC, smaller gaps beteen modules
- Resolutions remain affected

Distortions seen by laser

LP TPC cathode

Fig.: Cathode mounted in the Large Prototype.

- 7 Micromegas modules, 1 without HV
- Shift arrows scaled 5x
- Displacements are ~2.5 mm

Details: MicroMegas modules

 $B=1\,{\rm T},\, \textit{E}_{\rm drift}=240\,{\rm V/cm},$ Shift scaled by a factor 5, pads: $1,2\times5,7\,{\rm mm}^2$

07 Sep 2014

Space charge effects in TPC from ions

- Negligible effect on electron drift from primary ions
- Distortion on drifting electrons from backflow ion sheets is up to 60 μm
- Need ion gate to eliminate the backflow; under development

In-situ calibration calorimetry

- Absolute calibration ECAL can be checked/adjusted by comparison with tracker or using electrons and photons from Bhabha's or return-Z + kinematical constraints. No need for running at Z peak
- Cosmic rays may not be sufficient for MIP-scale monitoring, but MIP-like segments in hadronic showers can be used
- Z-peak running: 1 pb⁻¹ sufficient to have >1000 tracks per layer module AHCAL up to layer 20; To reach out to layer 48 would need 20 pb^{-1,}, but can be reduced to 10 pb⁻¹ by adding the mupair tracks.
- 500 GeV: 3% calibration out to layer 20 can be reach with ~2 fb⁻¹
- Beam halo muons: could be useful for endcap detectors; rate depends on shielding

Conclusions

• Z-peak running:

- Are the canonical numbers based on LEP experience (10 pb⁻¹ commissioning, 0.5-1 pb⁻¹ quick re-alignment) sufficient for ILD detector modularity?
- Simulation alignment excercise needed?
- Alternatives at nominal beam energy?
 - Z return
 - Momentum calibration from Z, J/ψ , Y (e.g. Graham Wilson at AWLC14)
- Cosmics, yes (LHC has shown importance), but:
 - 0.5% duty cycle due to power pulsing
 - reduced rate, because of underground location, but maybe not so deep
- B-field mapping
 - Can we measure it precisely enough?

(study on use of detailed map in reconstruction ongoing)