

From LEP experiments to LHC

University of Helsinki & Helsinki Institute of Physics

LEP/CERN → Tevatron/Fermilab → LHC/CERN

Detector Laboratory - basis of experimental hep in Finland.

Where it all started: DELPHI MicroVertexDetector

Two layers of single-sided Si-strip sensors - mechanical support structure & sensor read-out - 1990

A 3rd single-sided layer added & beam pipe reduced in diameter - Finnish Si-sensors (VTT), mechanical support structure & mounting -1991

Two single-sided layers exchanged to double-sided double-metal sensors -double-sided sensor development, mounting & cooling - 1994

An extended three-layer barrel tracker with fwd crowns of pixel & ministrip sensors (DELPHI Silicon Tracker)

-assembly of outer layer modules & mounting - 1996

Design & feasibility studies, pattern recognition and hit reconstruction software development, coordination of the project

60cm Long Si-Strip Detector Ladder

Applications of precision sensors in industries:

Non-destructive testing: paper industry mechanical wood processing pcb-producers,... safety

Agilent, Honeywell, Valmet,...

Environment: public sector (air pollution) energy sector (dosimetry) medical sector (dosimetry)

Säteilyturvakeskus - Kumpula Westinghouse, Siemens, IVO...

Medical: medical imaging...

General Electric, Philips, Siemens, Toshiba

Services: flip chip bonding custom designs consulting CERN, Fermilab,...
Metorex, Detech,...
ESA, NASA,...R&D programs

NS- Digital Image

DETECTOR LABORATORY - FACILITIES

- Clean room, class 100 and class 1000
- Ultrasonic automatic wedge bonder (Kulicke-Soffa) with video monitoring
- Manual probe station
- LCR-meter (HP 4284A)
- Computer controlled measurement system for static detector analysis
- Precision detector alignment system for mechanical assembly of strip detectors, accuracy 5 μm
- Printed circuit and electronics design tools
- Electronics design programs
- Visual scanning microscope
- Gas chromatograph with TCD, FID detectors, integrator and cryotrap sampling unit
- Gas chromatograph with mass spectrometer (HP G1800B)
- Vacuum gauge system (several gauges)
- X-ray devices
- Several NIM and VME crates with many data acquisition modules
- Automatic four-point resistivity meter station with Picoammeter and Electrometer
- PC-controllable gas mixer unit
- MALDI-TOF mass spectrometer
- Several high voltage units, counters, pulse generators, multichannel analyzers
- Vacuum metal evaporator (Edwards Auto 306)
- Excimer and nitrogen lasers

Gas amplified detectors

- proportional counters
- streamer tubes
- multistep multiwire chamber for beta particle imaging
- microstrip gas chambers
- study of ageing of gas filled radiation detectors

Ageing of gaseous detectors

- polymer deposits on anode and cathode surfaces created by large radiation doses; mechanism not well known
- depends on the purity of the gas mixture, on the materials used and on the electric field strength on electrodes gas analysis system based on sample concentration by cryotrap unit
 - purity level measurements of fill gases
 - analysis of outgassing products of construction materials
 - analysis of stable compounds created by electron avalanches
 - effect of additives to the chemistry of gaseous detectors
 aim: experimental data for ageing model

Semiconductor detectors

- diodes
- single sided silicon strip detectors (AC & DC)
- double sided silicon strip detectors (AC)
- single sided stereo angle strip detectors
- silicon drift chambers
- silicon drift chambers with integrated FET
- radiation hardness studies
- pixel detectors (Si & CdZnTe)
- 3D silicon detectors

TOWARDS EDGELESS DETECTORS

1. EDGELESS DETECTORS

• Normal strip or pad detector (with or without gr) scribed into or near active region

Scribe line

"ACTIVE EDGE DETECTORS"

- •basic idea: doped edge (n or p) is brought near the active strips/pads
- see principled sketch below

- so far not demonstrated, but could be done at least on SOI
- will probably have breakdown problems, if the distance between the active strips and edge doping is considerably smaller than the termination area in the planar devices

Figure: First 3-dimensional Si-detectors manufactured in Finland in cooperation with SEFO, HIP, VTT and CERN.

Main I dea

- Generic Design.
- Tile: modularity, scalability.
- Pixel pitch: down to 35µm.
- Dimensions: now ~ 2cm².
- Detector: Si, CdZnTe, consider CdTe, Pbl₂.
- CMOS ASIC: Custom made for each application.
- Seemless tiling: no software interpolation.

The Helsinki Group - Domestic Network

Institute/ Coordinator

Helsinki Institute of Physics (hip. fi) R. Orava

Division of High Energy Physics, University of Helsinki (physics.helsinki.fi/~www_sefo/sefo.html) R. Orava

Durham University V. Khoze

I owa State University J. Lamsa

Espoo-Vantaa Institute of Technology (evitech.fi)

T. Leinonen

Pohjois-Savo Polytechnic (pspt.fi)
H. Heikura & A. Toppinen

Rovaniemi Polytechnic (ramk. fi) J. Leino

VTT Technical Research Center of Finland (vtt.fi) I. Suni, S. Eränen

Responsibility

Physics and detector simulation, integration&testing, project coordination

Physics and detector simulation, project coordination

Phenomenology of Forward Physics

Simulation

Software & firmware development

Hybrid development/RF testing/ slow controls/tests

Data base/GRID

Edgeless Si-detectors for microstation

