

Karlsruhe probe equipment and QA proposals/expertise

Frank Hartmann Thomas Müller Wim de Boer + 2 possible students

Lab Expertise

Delphi: World largest 1996-2000 1.8m²

- Delphi:
 - Quality control on sensors and modules, Assembly of Pixel and Outer Barrel modules (Update '97)
- CDF II ISL:
 - Sensor Prototype evaluation
 - Quality control, Assembly fixture design and construction
- · CMS
 - Prototyping (sensor & modules)
 - Definition of QA procedure, Design of sensors
 - Material Analysis
 - Long term Testing
 - Irradiation
 - Definition of QA procedure for modules
 - Dedicated pinhole test, beam dump test, current/noise correlations ...
 - Bonding
 - Integration

Sensor Testing Equipment I

2 homemade flexible probe stations

- 6" (adaptable for larger size)
- cold chuck -10°C (+100°C to -10°C)
- very flexible
 - individual needles
 - bias travels with sensor
- switching matrix
- RH & T monitoring

Frank Hartmann

- LCR, electrometer, HV, quasistatic CV!
- Camera (incl. frame grabber)
- Double sided jig

Suitable for strip characterization of sensors and full modules

Sensor Testing Equipment II

Standard Measurements:

- Global:
 - IV, CV
- Strip:
 - Current, CaC, dielectric current (pinhole)
 - inter strip capacitance, inter strip resistance
- Special:
 - VFlat
 - Isurf

Software specialties:

- <u>All</u> parameters versus
 - Time
 - Voltage
 - Temperature
- Defined potential on neighbor pads
 - E.g. current measurement on DC while AC pad on voltage
- Current induced with IR
- Combination of all the above with different parameters; scriptable
- Applicable on full modules

Longterm Station

- Long term testing
 - 10 sensors under bias voltage while logging current

Frank Hartmann

2nd SiLC Meeting, Paris

CMS process control (Florence, Strasbourg, Vienna)

- Special exhaustive set of measurements to monitor the processes
 - PQC EXTEND QTC + Redundancy done on dedicated teststructures:
 - Destructive tests
 - Full automatization allows a much higher sample
 - CV → V_FD
 - IV Breakdown voltage ,
 - Total leakage current
 - V_Flatband (On MOS structure)
 - Surface Current (On Gate Controlled Diode)
 - Cint in 10% from the parametrization
 - Interstrip resistance > 1 G Ω
 - Rpoly
 - P+ Implant Resistance: Rp+ < * kΩ/cm
 - Metal Layer resistance: Ral < * $m\Omega$ /square
 - Cac
 - Vbreak(ac) (destructive test)
 - Idiel @ higher voltages
- PQC results affect complete batch

CMS experience told us: THIS IS VERY IMPORTANT!

2nd SiLC Meeting, Paris

Material Analysis with Environmental Electron microscope

Our neighbor institute runs an ESEM, which is accessible

Frank Hartmann

2nd SiLC Meeting, Paris

CMM and bonder

CMS module on our 50*50*50cm³ 3D CMM

Full automatic bonder

Proton irradiation

- Temperature < -10°C (nitrogen)
- Area: 20x40cm²
- Time for 15y LHC (100cm²):15min

Setup for surface irradiation only

60keV (~20keV photons) x-ray source

- @ 25mA ~148krad/h (on a spot ~2cm radius)
- Scanning possible
- Not suitable for LHC dose

Diagnose Test Station

Purpose: diagnostics of faulty modules Full CMS Readout LED array: (1050nm and 950nm) Movable LASER: for single strip/pitch scans (1050/650 nm)

- Possibility to set probe needles,
- Tests with a ⁹⁰Sr source
- Cosmics
- High resolution IV
- Possibility to introduce CV.
- Cold measurements possible with cold N

Fast Module Test for CMS

0

- Test stands for CMS modules:
 - Full automatized readout
 - Readout warm and cold
 - Scenarios; scriptable
 - Cosmic trigger
 - LED array
 - Continous light
 - to artificially increase leakage current
 - Pulsed light
 - short illumination ~10 strips

Possible later adaptation for special SiLC tests after CMS production!

- Karlsruhe is well equipped and experienced to evaluate all new sensors and may agree later on to do quality assurance for SiLC
- We are looking forward to get sensors in hand
 - For Karlsruhe: We would "invest" one-two competent student(s) for the evaluations, BUT we then really need prototypes from the SiLC community

