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Introduction – physics at the ILC

■ The Int e+e− LC and its detectors will 
allow precise measurements of cross 
sections, masses, branching ratios...

■ E.g. Branching ratios of Higgs boson:

■ Requires quark flavour identification.

■ Contribute to understanding of mass, 
dark matter, structure of space-time... 

■ E.g. effects of large extra dimensions 
on ALR = (σL – σR)/σtot as a function 
of cos θ in process

■ Requires quark charge identification.

e e ff .+ − →



Schematic of ILC detector



Requirements on the ILC vertex detector

■ Identify quark flavour by measuring 
distance hadrons fly before decay.

■ Net charge of particles from vertices 
can give quark charge. 

■ Point precision < 5 μm needed.
■ Two track resolution < 40 μm.
■ Pixels ~ 20 x 20 μm2 suffice.

■ Layer thickness < 0.1% X0.
■ First measurement at r ~ 1.5 cm.
■ Need ~ 5 layers to allow pattern 

recognition.
■ Leads to vertex detector design:
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■ Quantify performance in terms of λ0, 
probability of reconstructing neutral 
B hadron as charged.

■ Investigate effects of changing 
detector inner radius.

■ Larger BP radius implies thicker BP:
♦ RBP = 14 mm, t = 0.4 mm.
♦ RBP = 25 mm, t = 1.0 mm. 

■ Significant loss of performance with 
increasing RBP.

■ Can express in terms of effective 
luminosity loss.

■ For EJet = 25 GeV and RBP = 25 mm, 
must inc. lumi. by factor ~1.7 w.r.t
RBP = 15 mm to get same error.

■ λ0 for different detector 
configurations: 

Quark charge identification performance



Constraints on the vertex detector due to the ILC

■ Readout pixels 20 times in bunch 
train at √s = 500 Gev, i.e. ~ every 
50 μs, if want occupancy ~ 0.3%.

■ Radiation dose ~ 20 krad p.a.
■ Neutron background from 

interactions of e+ and e− in beam 
dumps ~ 109 1 MeV n/cm2 p.a.

■ Electromagnetic interference 
generated by e+ and e− beams.

■ Beam induced pick-up disabled the 
electronics of the SLD vertex 
detector for ~ 1 μs after each bunch 
crossing.
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■ Beamstrahlung...

■ ...results in production of ~ 5 hits/cm2

each bunch crossing in inner layer 
(B = 4T, √s = 500 GeV).

■ Time structure of beam at 
√s ~ 500 Gev (~ 1 TeV):



Column Parallel CCDs

■ Achieve necessary readout speed 
with CCDs using column parallel 
architecture:

■ Must drive image register at 50 MHz 
to readout in 50 μs.

■ Conceptual “ladder” design:



CPC1

■ First of these, CPC1, manufactured 
by e2v.

■ Two phase, 400 (V) × 750 (H) pixels 
of size 20 × 20 μm2.

■ Metal strapping of clock gates.
■ Two-stage and one-stage source 

follower and direct (charge) outputs.

■ Standalone CPC1 tests:
■ Noise ~ 100 e− (60 e− after filter).
■ Minimum clock potential ~1.9 V.

■ Max clock frequency above 25 MHz 
(design 1 MHz).



CPC1 bump-bonded to CPR1 readout chip

■ Marry with CMOS CPCCD readout 
ASIC, CPR1 (RAL):

■ IBM 0.25 μm process.
■ 20 μm pitch, designed for 50 MHz.

■ Bump bonding performed by VTT:

■ First time e2v CCDs bump bonded.



CPC1 bump bonded to CPR1 readout chip

■ Bump bonds are good, 
as visible under  
microscope...

■ ...but yield of 
functioning assemblies 
only 30%.

■ 6.9 keV X-ray hits, 1 MHz column parallel readout:   

Inv. charge o/ps
(+ ive signals) 
noise ≈100 e-

Non-inv. volt. o/ps
(- ive signals) 
noise ≈ 60 e-



Next generation CPCCD readout chip, CPR2

■ CPR2 designed for CPC2 by the 
Microelectronics Group at RAL. 

■ All problems identified with CPR1 
rectified.

■ Many additional features to improve 
testing.

■ Size: 6 × 9.5 mm2.

■ IBM 0.25 μm CMOS process.
■ First tests now completed.

voltage and charge amps
analogue
test IO

digital
test IO

5 bit FADCs
on 20 μm pitch

cluster finding logic

sparse readout
circuitry



Next generation readout chip – CPR2

■ Test clusters in: ■ Sparsified data out:



Next generation readout chip – CPR2

■ Test analogue-to-digital conversion:  ■ Hysteresis in the ADC transfer curve:
♦ Charge coupling between digital 

and analogue circuitry in the ADC 
comparators.

♦ Should be much less than 1 x LSB.
■ At least two ways to solve it for next 

chip, CPR2a:
♦ Reduce transistor size (less gate 

charge).
♦ Separate analogue and digital 

signals using switch.
■ CPR2a design largely complete, start 

work on CPCCD drive: major 
challenge remaining for this sensor.



Next generation CPCCD – CPC2

■ Compatible with CPR1 and CPR2
■ Two charge transport sections.
■ Choice of epitaxial layers giving 

different depletion depths: 100 Ω cm 
(25 μm thick) and 1.5 kΩ cm 
(50 μm thick)

■ Design allows few MHz operation 
for CPC2-70.

■ Hope to achieve 50  MHz with small 
CPC2s.
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CPC2

■ Three chip sizes on CPC2 wafer:
♦ CPC2-70: 92 × 15 mm2 image 

area.
♦ CPC2-40: 53 × 15 mm2.
♦ CPC2-10: 13 × 15 mm2.
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CPC2 clock distribution

■ Novel idea for high-speed clock propagation, “busline-free” CCD:
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CPC2

■ CPC2-40 on motherboard awaiting testing:

■ (See Konstantin Stefanov’s talk at Vertex05 for more details)



CCD radiation hardness tests

■ Study CTI in CCD58 before and after 
irradiation (90Sr 30 krad).

■ Measure decrease in charge from 55Fe 
X-rays as func. of number of pixels 
through which charge transferred.

■ Compare data with simulations 
performed using ISE-TCAD.

■ Extend to CPCCD in 2006.  
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Principle of the ISIS 

■ CPCCD, charge-to-voltage conversion during bunch train, susceptible to pick-up?
■ In-situ Storage Image Sensor (ISIS) eliminates this problem.
■ Charge is collected under photogate, transferred to storage CCD 20 times during 

the 1 ms bunch train, then converted to voltage and read out in 200 ms quiet period 
after bunch train: column parallel readout at 1 MHz sufficient.



First ISIS tests

■ “Proof of principle” device designed 
by e2V technologies.

■ Array of 16 ×16 pixels with CCD 
storage register (5 cells) in each pixel.

■ ISIS1 in 100-pin 
PGA carrier →

■ Pixel pitch 40 × 160 μm2, no edge 
logic (pure CCD process).

■ Size ≈ 6.5 × 6.5 mm2.



First X-ray signals from ISIS1

■ Observe “steps” with correct amplitude: 3 μV/e− × 1620 e− × gain (10) =  49 mV.



Future ISIS developments

■ ISE-TCAD used to investigate 
achievable charge transfer efficiency, 
including simulation of implantation 
procedure.

■ Next generation of ISIS will be 
CMOS based. 

■ Targeting 0.25 μm (or 0.18 μm) 
process.

■ Possible to use 6.5 nm SiO2 for both 
CCD and transistor gate dielectric?

■ Maximum voltage 3.3 V.
■ Non-overlapping poly-Si gates 

(0.35 μm gap using 0.25 μm design 
rules ).



ISIS and the CMOS process 

■ Good charge transfer efficiency achieved in simulations. 
♦ Charge under photogate:



ISIS and the CMOS process 

■ Good charge transfer efficiency achieved in simulations.
♦ Charge transferring to first storage gate:



ISIS and the CMOS process 

■ Good charge transfer efficiency achieved in simulations.
♦ Charge under first storage gate: 



ISIS and the CMOS process 

■ Good charge transfer efficiency achieved in simulations.
♦ Charge transferring to second storage gate:



Radiation hardness of device with 
non-overlapping gates

■ DALSA manufacture CCDs with 
non-overlapping gates.

■ Have provided five CCDs which 
will allow studies of effects of 
electromagnetic radiation on these 
devices.

■ Tests now starting at Rutherford.
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Sensors – FAPS

■ Monolithic Active Pixel Sensors also 
under investigation for ILC.  

■ Storage capacitors added to pixels: 
Flexible Active Pixel Sensors.



Sensors – FAPS

■ Present design “proof of principle”.
■ Pixels 20 x 20 μm2, 3 metal layers, 

10 storage cells.
■ Test of FAPS structure with LED:  

■ 106Ru β source tests:

■ Signal to noise ratio ~ 14.
■ Ongoing development of APS for 

scientific applications by MI3 
collaboration.



Mechanical studies

■ “Stretched” sensor studies revealed 
thickness of ~ 50 μm Si needed. 

■ Beryllium results poor: bad match of 
thermal expansion with Si.

■ Look at silicon “floating” on silicon 
carbide...

■ ...and silicon/carbon-foam (reticulated 
vitreous carbon) sandwich. 

Ladder Material X/Xo

Silicon on SiC foam 
(~ 8% density)

Silicon (25 μm), SiC foam (1.5mm); 
silicone adhesive (~ 300 μm in tiny pads)

0.16% (~ 0.26% at glue pad 
locations)

Silicon-RVC foam sandwich     
(~ 3% density)

Silicon (25 μm) ×2; RVC foam (1.5mm); 
silicone adhesive (~100 μm in tiny pads) × 2

0.08% (~ 0.14% at glue pad 
locations)

■ Use “Nusil” silicone pillars to attach 
the silicon to the substrate.



Thermal studies

■ CPCCD drive will exploit LC duty 
cycle of 0.5% to achieve low average 
power consumption: cool using N2
gas.

■ Investigations of efficacy of cooling 
starting using quarter vertex detector 
thermal test rig. 

■ Simulations also under development 
to aid design of cooling system.



Other plans

■ Construction of ATLAS 
semiconductor track detector now 
nearing completion (e.g. endcap will 
be transported from Liverpool to 
CERN this month.)

■ UK-ATLAS institutes have submitted 
a “Statement-of-Interest” for 
contributing to design and 
construction of new tracker for SLHC

■ Proposal in 2009, build from 2010?
■ Pixels: 4.0 m2, ~210 Mchannels
■ Short strips (3 cm): 46 m2,

~30 Mchannels
■ Long strips (12cm): 108 m2, 

~11 Mchannels. 
■ Interest expressed by e2v.
■ Small amount of funding available to 

develop MAPS based on SoI with 
Andor (Belfast).



Summary

■ Studies of sensors for ILC in UK so 
far geared towards vertex detector 
(LCFI Collaboration).

■ Studies of sensors, optimisation of 
vertex detector design for physics 
continuing.

■ CCDs with column parallel readout 
look to be one sensor type which can 
provide the necessary performance.

■ In-situ Image Storage Sensor offers 
high degree of immunity to possible 
RF pick-up problems, improved 
radiation hardness and relaxed 
readout speed requirements – first 
proof of principle device now tested.

■ Active Pixel Sensor studies 
continuing mainly within MI3 
framework for general science 
applications.

■ Silicon/foam sandwich structures 
promise to provide very low mass 
support structures for silicon sensors.

■ Studies of vertex detector cooling 
have now started.

■ Increased interest in, and effort 
available for, μ-strip tracker studies 
as ATLAS build draws to a close.
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