Geant 4 simulation of the DEPFET beam test Daniel Scheirich, Peter Kodyš, Zdeněk Doležal, Pavel Řezníček Faculty of Mathematics and Physics Charles University, Prague ## Index - Geant 4 simulation program - Model validation - Geometry of the beam test - Unscattered particles - Electron beam simulation - Residual plots for 2 different geometries - Residual plots for 3 different window thickness - CERN 180 GeV pion beam simulation - The latest results - Conclusions ## Geant 4 simulation program - More about Geant 4 framework at www.cern.ch/geant4 - C++ object oriented architecture - Parameters are loaded from files ## Model validation - Simulation of an electron scattering in the 300 μm silicon wafer - Angular distribution histogram - Comparison with a theoretical shape of the distribution. According to the Particle Physics Review it is approximately Gaussian with a width given by the formula: $$heta_0=$$ 13.6MeV $z\sqrt{ rac{x}{X_{ heta}}}\left(1+$ 0.038 $\ln\left(rac{x}{X_{ heta}} ight) ight)eta^{-1}c^{-1}p^{-1}$ where p, β and z are the momentum, velocity and charge number, and x/X_0 is the thickness in radiation length. Accuracy of θ_0 is 11% or better. ### Example of an electron scattering ## Results: simulation vs. theory $\vartheta_{0...}$ width of the theoretical Gaussian distribution $\sigma...$ width of the fitted Gaussian accuracy of ϑ_0 parametrisation (theory) is 11% or better | | Simulation | Theory | | |---------|-----------------------|----------------------|----------------------| | E [GeV] | σ [mRad] | ϑ_0 [mRad] | ϑ_0/σ | | 1 | 0.57905 ± 0.00191 | 0.602 ± 0.066 | 0.96 | | 2 | 0.29061 ± 0.00087 | 0.301 ± 0.033 | 0.97 | | 3 | 0.19550 ± 0.00055 | 0.201 ± 0.022 | 0.97 | | 4 | 0.14610 ± 0.00041 | 0.150 ± 0.017 | 0.97 | | 5 | 0.11719 ± 0.00032 | 0.120 ± 0.013 | 0.97 | #### Sigma and theta0 vs. energy Good agreement between the G4 simulation and the theory ## Geometry of the beam test Electron beam: 3x3 mm², homogenous, parallel with x-axis ## Geometry of the beam test: example ### Configurations used for the simulation as planned for January 2006 TB – info from Lars Reuen, October 2005 | <i>a</i> [mm] | <i>b</i> [mm] | c [mm] | <i>d</i> [mm] | e [mm] | <i>f</i> [mm] | |---------------|---------------|--------|---------------|--------|---------------| | 15 | 40 | 40 | 40 | 40 | 15 | - Module windows: 50 μm copper foils - no foils - 150 μm copper foils #### **Geometry 2** | <i>a</i> [mm] | <i>b</i> [mm] | c [mm] | <i>d</i> [mm] | e [mm] | <i>f</i> [mm] | |---------------|---------------|--------|---------------|--------|---------------| | 15 | 140 | 40 | 40 | 140 | 15 | Module windows: • 50 μm copper foils ## Unscattered particle (geometry only) - Intersects of an unscattered particle lie on a straight line. - A resolution of telescopes is approximately pitch/(S/N) ~ 2 μm. - Positions of intersects in telescopes plane were blurred with a Gaussian to simulate telescope resolution. - These points were fitted by a straight line. ## Residual distribution in DUT: unscattered particle χ^2 cut: width **100%** : σ =0.9912 μ m **70%** : σ =0.9928 μm **50%** : σ =0.9918 μm **30%** : σ =0.9852 μ m #### Unscattered particles: residual plots σ = 1.19 μ m σ = 1.60 μ m σ = 1.60 μ m $\sigma = 1.18 \ \mu m$ $\sigma = 0.99 \ \mu m$ #### **Geometry 2** $\sigma = 1.05 \ \mu m$ $\sigma = 1.68 \ \mu m$ $\sigma = 1.68 \ \mu m$ $\sigma = 1.05 \ \mu m$ σ = 0.99 μ m ## Electron beam simulation - There are 2 main contributions to the residual plots RMS: - Multiple scattering - Telescope resolution - Simulation was done for 1 GeV to 5 GeV electrons, 50000 events for each run - Particles that didn't hit the both scintillators were excluded from the analysis - χ^2 cuts were applied to exclude bad fits ## Example of χ^2 cuts ## Electron beam simulation: residual plots #### Electron beam simulation: residual plots | Energy: 1 GeV, no. of events: 36486 | | | | | | | | | | |-------------------------------------|--------------------------|------------------|------------------|------------------|------------------|----------------|--|--|--| | χ^2 cut [mm ²] | | TEL0 | TEL1 | TEL2 | TEL3 | DUT | | | | | | $\sigma R(y)$ [μ m] | 22.36 ± 0.08 | 23.88 ± 0.09 | 24.96 ± 0.09 | 23.10 ± 0.09 | 38.8 ± 0.2 | | | | | 100% | $\sigma R(z) [\mu m]$ | 22.32 ± 0.08 | 23.68 ± 0.09 | 24.94 ± 0.09 | 22.96 ± 0.09 | 38.3 ± 0.2 | | | | | 0.0025 | $\sigma R(y)$ [μ m] | 13.26 ± 0.06 | 16.08 ± 0.07 | 16.67 ± 0.07 | 13.63 ± 0.06 | 28.6 ± 0.2 | | | | | 70% | $\sigma R(z) [\mu m]$ | 13.21 ± 0.06 | 15.99 ± 0.07 | 16.63 ± 0.07 | 13.60 ± 0.06 | 28.4 ± 0.2 | | | | | 0.0013 | $\sigma R(y)$ [μ m] | 9.89 ± 0.05 | 12.55 ± 0.07 | 12.83 ± 0.07 | 10.07 ± 0.05 | 22.9 ± 0.2 | | | | | 50% | $\sigma R(z) [\mu m]$ | 9.93 ± 0.05 | 12.53 ± 0.07 | 12.79 ± 0.07 | 10.10 ± 0.05 | 22.9 ± 0.2 | | | | | 0.0006 | $\sigma R(y)$ [μ m] | 6.97 ± 0.05 | 9.17 ± 0.06 | 9.21 ± 0.06 | 7.00 ± 0.05 | 18.9 ± 0.2 | | | | | 30% | $\sigma R(z)$ [μ m] | 6.97 ± 0.05 | 9.15 ± 0.06 | 9.17 ± 0.06 | 6.98 ± 0.05 | 18.8 ± 0.2 | | | | ## Residual-plot sigma vs. particle energy | E [GeV] | 1 | 2 | 3 | 4 | 5 | |---------|----------------|------------------|------------------|-----------------|-------------------| | 100% | 38.8 ± 0.2 | 19.6 ± 0.1 | 13.17 ± 0.07 | 9.90 ± 0.05 | 7.96 ± 0.04 | | 70% | 28.6 ± 0.2 | 14.41 ± 0.10 | 9.71 ± 0.06 | 7.38 ± 0.05 | 5.89 ± 0.04 | | 50% | 22.9 ± 0.2 | 11.69 ± 0.09 | 7.89 ± 0.06 | 5.90 ± 0.04 | 4.98 ± 0.04 | | 30% | 18.9 ± 0.2 | 9.48 ± 0.09 | 6.66 ± 0.06 | 5.02 ± 0.05 | $ 4.28 \pm 0.04 $ | #### Residual plots: two geometries ## Residual plots: two geometries | E [GeV] | 1 | 2 | 3 | 4 | 5 | |---------|----------------|------------------------------------|------------------|-----------------|-----------------| | 100% | 38.8 ± 0.2 | 19.6 ± 0.1 | 13.17 ± 0.07 | 9.90 ± 0.05 | 7.96 ± 0.04 | | 70% | 28.6 ± 0.2 | $\textbf{14.41} \pm \textbf{0.10}$ | 9.71 ± 0.06 | 7.38 ± 0.05 | 5.89 ± 0.04 | | 50% | 22.9 ± 0.2 | 11.69 ± 0.09 | 7.89 ± 0.06 | 5.90 ± 0.04 | 4.98 ± 0.04 | | 30% | 18.9 ± 0.2 | 9.48 ± 0.09 | 6.66 ± 0.06 | 5.02 ± 0.05 | 4.28 ± 0.04 | | E [GeV] | 1 | 2 | 3 | 4 | 5 | |---------|----------------|----------------|----------------|------------------|----------------------------------| | 100% | 86.9 ± 0.6 | 45.4 ± 0.3 | 30.3 ± 0.2 | 22.8 ± 0.1 | 18.3 ± 0.1 | | 70% | 62.6 ± 0.6 | 33.0 ± 0.3 | 21.9 ± 0.2 | 16.8 ± 0.1 | $\textbf{13.4} \pm \textbf{0.1}$ | | 50% | 43.5 ± 0.5 | 21.9 ± 0.2 | 15.2 ± 0.1 | 11.47 ± 0.10 | 9.08 ± 0.08 | | 30% | 29.0 ± 0.4 | 14.7 ± 0.2 | 9.7 ± 0.1 | 7.44 ± 0.07 | 5.94 ± 0.06 | | E [GeV] | 1 | 2 | 3 | 4 | 5 | |---------|----------------|------------------|------------------|-----------------|-----------------| | 100% | 38.7 ± 0.2 | 19.5 ± 0.1 | 13.11 ± 0.07 | 9.85 ± 0.05 | 7.90 ± 0.04 | | 70% | 28.5 ± 0.2 | 14.28 ± 0.10 | 9.56 ± 0.06 | 7.16 ± 0.05 | 5.76 ± 0.04 | | 50% | 22.8 ± 0.2 | 11.55 ± 0.09 | 7.57 ± 0.06 | 5.65 ± 0.04 | 4.60 ± 0.03 | | 29% | 18.8 ± 0.2 | 9.35 ± 0.09 | 6.30 ± 0.06 | 4.66 ± 0.05 | 3.75 ± 0.04 | | ı | E [GeV] | 1 | 2 | 3 | 4 | 5 | |---|---------|----------------|----------------|-----------------|------------------|-----------------| | ı | 100% | 86.9 ± 0.6 | 45.3 ± 0.3 | 30.3 ± 0.2 | 22.8 ± 0.1 | 18.2 ± 0.1 | | ı | 70% | 62.5 ± 0.6 | 32.9 ± 0.3 | 21.7 ± 0.2 | 16.7 ± 0.1 | 13.3 ± 0.1 | | ı | 50% | 43.3 ± 0.5 | 21.9 ± 0.2 | 15.3 ± 0.1 | 11.07 ± 0.09 | 8.91 ± 0.07 | | ı | 30% | 28.9 ± 0.4 | 14.5 ± 0.2 | 9.54 ± 0.10 | 7.29 ± 0.07 | 5.85 ± 0.07 | #### Three windows thicknesses for the geometry 1 #### **Geometry 1** Module windows: • no foils - 50 μm copper foils - 150 μm copper foils #### Residual plots: three thicknesses ## Residual plots: three thicknesses | E [GeV] | 1 | 2 | 3 | 4 | 5 | |---------|----------------|------------------|-----------------|-----------------|-----------------| | 100% | 24.4 ± 0.1 | 12.32 ± 0.07 | 8.19 ± 0.04 | 6.25 ± 0.03 | 5.08 ± 0.02 | | 70% | 18.4 ± 0.1 | 9.30 ± 0.06 | 6.17 ± 0.04 | 4.83 ± 0.03 | 3.94 ± 0.03 | | 50% | 15.3 ± 0.1 | 7.82 ± 0.06 | 5.38 ± 0.04 | 4.17 ± 0.03 | 3.48 ± 0.03 | | 29% | 13.2 ± 0.1 | 6.77 ± 0.07 | 4.67 ± 0.05 | 3.73 ± 0.04 | 3.20 ± 0.03 | | E [GeV] | 1 | 2 | 3 | 4 | 5 | |---------|----------------|----------------|------------------------------------|------------------|------------------| | 100% | 58.9 ± 0.4 | 30.2 ± 0.2 | 20.2 ± 0.1 | 15.38 ± 0.08 | 12.24 ± 0.06 | | 70% | 43.1 ± 0.3 | 22.1 ± 0.1 | $\textbf{14.75} \pm \textbf{0.09}$ | 11.23 ± 0.07 | 9.04 ± 0.06 | | 50% | 33.9 ± 0.3 | 17.5 ± 0.1 | 11.66 ± 0.09 | 8.69 ± 0.07 | 7.23 ± 0.05 | | 30% | 27.9 ± 0.3 | 14.0 ± 0.1 | 9.6 ± 0.1 | 7.21 ± 0.08 | 5.79 ± 0.06 | | E [GeV] | 1 | 2 | 3 | 4 | 5 | |---------|----------------|------------------------------------|------------------|-----------------|-----------------| | 100% | 38.8 ± 0.2 | 19.6 ± 0.1 | 13.17 ± 0.07 | 9.90 ± 0.05 | 7.96 ± 0.04 | | 70% | 28.6 ± 0.2 | $\textbf{14.41} \pm \textbf{0.10}$ | 9.71 ± 0.06 | 7.38 ± 0.05 | 5.89 ± 0.04 | | 50% | 22.9 ± 0.2 | 11.69 ± 0.09 | 7.89 ± 0.06 | 5.90 ± 0.04 | 4.98 ± 0.04 | | 30% | 18.9 ± 0.2 | 9.48 ± 0.09 | 6.66 ± 0.06 | 5.02 ± 0.05 | 4.28 ± 0.04 | | E [GeV] | 1 | 2 | 3 | 4 | 5 | |---------|----------------|------------------|-----------------|-----------------|-----------------| | 100% | 24.3 ± 0.1 | 12.22 ± 0.06 | 8.14 ± 0.04 | 6.16 ± 0.03 | 4.94 ± 0.02 | | 70% | 18.3 ± 0.1 | 9.16 ± 0.06 | 5.99 ± 0.04 | 4.61 ± 0.03 | 3.58 ± 0.02 | | 50% | 15.2 ± 0.1 | 7.62 ± 0.06 | 4.84 ± 0.04 | 3.66 ± 0.03 | 2.93 ± 0.02 | | 30% | 13.0 ± 0.1 | 6.38 ± 0.06 | 4.23 ± 0.04 | 3.19 ± 0.03 | 2.55 ± 0.03 | | E [GeV] | 1 | 2 | 3 | 4 | 5 | |---------|----------------|----------------|------------------|------------------|------------------| | 100% | 59.0 ± 0.4 | 30.2 ± 0.2 | 20.2 ± 0.1 | 15.37 ± 0.08 | 12.20 ± 0.06 | | 70% | 43.0 ± 0.3 | 22.1 ± 0.1 | 14.8 ± 0.1 | 11.01 ± 0.07 | 8.96 ± 0.06 | | 50% | 33.9 ± 0.3 | 17.5 ± 0.1 | 11.48 ± 0.09 | 8.61 ± 0.06 | 7.00 ± 0.06 | | 30% | 27.8 ± 0.3 | 13.9 ± 0.1 | 9.44 ± 0.10 | 6.93 ± 0.07 | 5.55 ± 0.06 | | E [GeV] | 1 | 2 | 3 | 4 | 5 | |---------|----------------|-----------------|------------------|-----------------|-----------------| | 100% | 38.7 ± 0.2 | 19.5 ± 0.1 | 13.11 ± 0.07 | 9.85 ± 0.05 | 7.90 ± 0.04 | | 70% | 28.5 ± 0.2 | 14.28 ± 0.10 | 9.56 ± 0.06 | 7.16 ± 0.05 | 5.76 ± 0.04 | | 50% | 22.8 ± 0.2 | 11.55 ± 0.09 | 7.57 ± 0.06 | 5.65 ± 0.04 | 4.60 ± 0.03 | | 29% | 18.8 ± 0.2 | 9.35 ± 0.09 | 6.30 ± 0.06 | 4.66 ± 0.05 | 3.75 ± 0.04 | ## Pion beam simulation - CERN 180 GeV pion beam was simulated - Geometries 1 and 2 were tested ## Pion beam: residual plots | Energy: 1 GeV, no. of events: 49931 | | | | | |-------------------------------------|--------------------------|---------------------|--|--| | χ^2 cut [mm 2] | | DUT | | | | | $\sigma R(y) \ [\mu m]$ | 0.215 ± 0.001 | | | | 100% | $\sigma R(z) \; [\mu m]$ | 0.214 ± 0.001 | | | | 0.0000 | $\sigma R(y)$ [μ m] | 0.1482 ± 0.0009 | | | | 67% | $\sigma R(z) \; [\mu m]$ | 0.1482 ± 0.0009 | | | | 0.0000 | $\sigma R(y) \ [\mu m]$ | 0.1137 ± 0.0009 | | | | 44% | $\sigma R(z) [\mu m]$ | 0.1131 ± 0.0009 | | | | 0.0000 | $\sigma R(y) [\mu m]$ | 0.0956 ± 0.0010 | | | | 27% | $\sigma R(z) [\mu m]$ | 0.0954 ± 0.0010 | | | | Energy: 1 GeV, no. of events: 49841 | | | | | |-------------------------------------|------------------------------|-------------------|--|--| | χ^2 cut [mm ²] | | DUT | | | | | $\sigma R(y)$ [μ m] | 0.499 ± 0.003 | | | | 100% | $\sigma R(z) [\mu m]$ | 0.491 ± 0.002 | | | | 0.0000 | $\sigma R(y)$ [μ m] | 0.355 ± 0.003 | | | | 69% | $\sigma R(z)$ [μ m] | 0.358 ± 0.003 | | | | 0.0000 | $\sigma R(y) [\mu m]$ | 0.238 ± 0.002 | | | | 49% | $\sigma R(z)$ [μ m] | 0.248 ± 0.002 | | | | 0.0000 | $\sigma R(y)$ [μ m] | 0.133 ± 0.001 | | | | 27% | $\sigma R(z) [\mu {\sf m}]$ | 0.134 ± 0.001 | | | | Energy: 1 GeV, no. of events: 49931 | | | | |-------------------------------------|--------------------------|-------------------|--| | χ^2 cut [mm ²] | | DUT | | | | $\sigma R(y)$ [μ m] | 1.020 ± 0.006 | | | 100% | $\sigma R(z)$ [μ m] | 1.020 ± 0.006 | | | 0.0000 | $\sigma R(y)$ [μ m] | 1.025 ± 0.007 | | | 70% | $\sigma R(z)$ [μ m] | 1.026 ± 0.007 | | | 0.0000 | $\sigma R(y)$ [μ m] | 1.024 ± 0.009 | | | 50% | $\sigma R(z)$ [μ m] | 1.017 ± 0.008 | | | 0.0000 | $\sigma R(y)$ [μ m] | 1.02 ± 0.01 | | | 30% | $\sigma R(z)$ [μ m] | 1.00 ± 0.01 | | | Energy: 1 GeV, no. of events: 49841 | | | | |-------------------------------------|------------------------------|-------------------|--| | χ^2 cut [mm ²] | | DUT | | | | $\sigma R(y)$ [μ m] | 1.138 ± 0.007 | | | 100% | $\sigma R(z) [\mu {\sf m}]$ | 1.126 ± 0.006 | | | 0.0000 | $\sigma R(y)$ [μ m] | 1.127 ± 0.008 | | | 70% | $\sigma R(z)$ [μ m] | 1.118 ± 0.007 | | | 0.0000 | $\sigma R(y) [\mu m]$ | 1.132 ± 0.009 | | | 50% | $\sigma R(z)$ [μ m] | 1.111 ± 0.009 | | | 0.0000 | $\sigma R(y)$ [μ m] | 1.12 ± 0.01 | | | 30% | $\sigma R(z) [\mu m]$ | 1.10 ± 0.01 | | ## The latest results - Final beam test geometry: similar to the Geometry 1 - DUT is shifted to the front side - The resolution of telescopes $\sim 5 \mu m$ ## Unscattered particle Telescope resolution 5 µm χ^2 cut: width **100%** : σ =2.53 \pm 0.02 μ m **70%** : σ =2.53 \pm 0.02 μ m **50%** : σ =2.49 \pm 0.02 μ m **30%** : σ =2.56 \pm 0.02 μ m Infinite energy extrapolation - Plot σ^2 vs. 1/E² - Angular distribution width σ due to a multiple scattering is proportional to 1/E ## Infinite purity extrapolation Attempt to exclude scattered tracks by Chi2 cut — infinite purity # Infinite purity and energy extrapolation Even the most stringent cut cannot eliminate multiple scattering effects ## Conclusions - Software for a simulation and data analysis has been created. Now it's not a problem to run it all again with different parameters. - There is no significant difference between the geometry 1 and 2 for unscattered particles. - We can improve the resolution by excluding bad fits. - Geometry 2 gives wider residual plots due to a multiple scattering. For 5 GeV electrons and $30\% \chi^2$ cut σ = **4.28** μ **m** for the Geometry 1 and σ = **5.94** μ **m** for the Geometry 2. ## Conclusions - For 5 GeV electrons and 30% χ^2 cut there is approximately 1 μ m difference between simulations with no module windows and 50 μ m copper windows. - CERN 180 GeV pion beam has a significantly lower multiple scattering. The main contribution to its residual plot width come from the telescopes intrinsic resolution. This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.