Geant 4 simulation of the DEPFET beam test

Daniel Scheirich,
Peter Kodyš,
Zdeněk Doležal,
Pavel Řezníček

Faculty of Mathematics and Physics Charles University, Prague

Index

- Geant 4 simulation program
- Model validation
- Geometry of the beam test
- Unscattered particles
- Electron beam simulation
 - Residual plots for 2 different geometries
 - Residual plots for 3 different window thickness
- CERN 180 GeV pion beam simulation
- The latest results
- Conclusions

Geant 4 simulation program

- More about Geant 4 framework at www.cern.ch/geant4
- C++ object oriented architecture
- Parameters are loaded from files

Model validation

- Simulation of an electron scattering in the 300 μm silicon wafer
- Angular distribution histogram
- Comparison with a theoretical shape of the distribution. According to the Particle Physics Review it is approximately Gaussian with a width given by the formula:

$$heta_0=$$
 13.6MeV $z\sqrt{rac{x}{X_{ heta}}}\left(1+$ 0.038 $\ln\left(rac{x}{X_{ heta}}
ight)
ight)eta^{-1}c^{-1}p^{-1}$

where p, β and z are the momentum, velocity and charge number, and x/X_0 is the thickness in radiation length. Accuracy of θ_0 is 11% or better.

Example of an electron scattering

Results: simulation vs. theory

 $\vartheta_{0...}$ width of the theoretical Gaussian distribution $\sigma...$ width of the fitted Gaussian accuracy of ϑ_0 parametrisation (theory) is 11% or better

	Simulation	Theory	
E [GeV]	σ [mRad]	ϑ_0 [mRad]	ϑ_0/σ
1	0.57905 ± 0.00191	0.602 ± 0.066	0.96
2	0.29061 ± 0.00087	0.301 ± 0.033	0.97
3	0.19550 ± 0.00055	0.201 ± 0.022	0.97
4	0.14610 ± 0.00041	0.150 ± 0.017	0.97
5	0.11719 ± 0.00032	0.120 ± 0.013	0.97

Sigma and theta0 vs. energy

Good agreement between the G4 simulation and the theory

Geometry of the beam test

Electron beam: 3x3 mm², homogenous, parallel with x-axis

Geometry of the beam test: example

Configurations used for the simulation

as planned for January 2006 TB – info from Lars Reuen, October 2005

<i>a</i> [mm]	<i>b</i> [mm]	c [mm]	<i>d</i> [mm]	e [mm]	<i>f</i> [mm]
15	40	40	40	40	15

- Module windows: 50 μm copper foils
 - no foils
 - 150 μm copper foils

Geometry 2

<i>a</i> [mm]	<i>b</i> [mm]	c [mm]	<i>d</i> [mm]	e [mm]	<i>f</i> [mm]
15	140	40	40	140	15

Module windows: • 50 μm copper foils

Unscattered particle (geometry only)

- Intersects of an unscattered particle lie on a straight line.
- A resolution of telescopes is approximately pitch/(S/N) ~ 2 μm.
- Positions of intersects in telescopes plane were blurred with a Gaussian to simulate telescope resolution.
- These points were fitted by a straight line.

Residual distribution in DUT: unscattered particle

 χ^2 cut: width

100% : σ =0.9912 μ m

70% : σ =0.9928 μm

50% : σ =0.9918 μm

30% : σ =0.9852 μ m

Unscattered particles: residual plots

 σ = 1.19 μ m σ = 1.60 μ m σ = 1.60 μ m

 $\sigma = 1.18 \ \mu m$ $\sigma = 0.99 \ \mu m$

Geometry 2

 $\sigma = 1.05 \ \mu m$ $\sigma = 1.68 \ \mu m$ $\sigma = 1.68 \ \mu m$ $\sigma = 1.05 \ \mu m$

 σ = 0.99 μ m

Electron beam simulation

- There are 2 main contributions to the residual plots RMS:
 - Multiple scattering
 - Telescope resolution
- Simulation was done for 1 GeV to 5 GeV electrons, 50000 events for each run
- Particles that didn't hit the both scintillators were excluded from the analysis
- χ^2 cuts were applied to exclude bad fits

Example of χ^2 cuts

Electron beam simulation: residual plots

Electron beam simulation: residual plots

Energy: 1 GeV, no. of events: 36486									
χ^2 cut [mm ²]		TEL0	TEL1	TEL2	TEL3	DUT			
	$\sigma R(y)$ [μ m]	22.36 ± 0.08	23.88 ± 0.09	24.96 ± 0.09	23.10 ± 0.09	38.8 ± 0.2			
100%	$\sigma R(z) [\mu m]$	22.32 ± 0.08	23.68 ± 0.09	24.94 ± 0.09	22.96 ± 0.09	38.3 ± 0.2			
0.0025	$\sigma R(y)$ [μ m]	13.26 ± 0.06	16.08 ± 0.07	16.67 ± 0.07	13.63 ± 0.06	28.6 ± 0.2			
70%	$\sigma R(z) [\mu m]$	13.21 ± 0.06	15.99 ± 0.07	16.63 ± 0.07	13.60 ± 0.06	28.4 ± 0.2			
0.0013	$\sigma R(y)$ [μ m]	9.89 ± 0.05	12.55 ± 0.07	12.83 ± 0.07	10.07 ± 0.05	22.9 ± 0.2			
50%	$\sigma R(z) [\mu m]$	9.93 ± 0.05	12.53 ± 0.07	12.79 ± 0.07	10.10 ± 0.05	22.9 ± 0.2			
0.0006	$\sigma R(y)$ [μ m]	6.97 ± 0.05	9.17 ± 0.06	9.21 ± 0.06	7.00 ± 0.05	18.9 ± 0.2			
30%	$\sigma R(z)$ [μ m]	6.97 ± 0.05	9.15 ± 0.06	9.17 ± 0.06	6.98 ± 0.05	18.8 ± 0.2			

Residual-plot sigma vs. particle energy

E [GeV]	1	2	3	4	5
100%	38.8 ± 0.2	19.6 ± 0.1	13.17 ± 0.07	9.90 ± 0.05	7.96 ± 0.04
70%	28.6 ± 0.2	14.41 ± 0.10	9.71 ± 0.06	7.38 ± 0.05	5.89 ± 0.04
50%	22.9 ± 0.2	11.69 ± 0.09	7.89 ± 0.06	5.90 ± 0.04	4.98 ± 0.04
30%	18.9 ± 0.2	9.48 ± 0.09	6.66 ± 0.06	5.02 ± 0.05	$ 4.28 \pm 0.04 $

Residual plots: two geometries

Residual plots: two geometries

E [GeV]	1	2	3	4	5
100%	38.8 ± 0.2	19.6 ± 0.1	13.17 ± 0.07	9.90 ± 0.05	7.96 ± 0.04
70%	28.6 ± 0.2	$\textbf{14.41} \pm \textbf{0.10}$	9.71 ± 0.06	7.38 ± 0.05	5.89 ± 0.04
50%	22.9 ± 0.2	11.69 ± 0.09	7.89 ± 0.06	5.90 ± 0.04	4.98 ± 0.04
30%	18.9 ± 0.2	9.48 ± 0.09	6.66 ± 0.06	5.02 ± 0.05	4.28 ± 0.04

E [GeV]	1	2	3	4	5
100%	86.9 ± 0.6	45.4 ± 0.3	30.3 ± 0.2	22.8 ± 0.1	18.3 ± 0.1
70%	62.6 ± 0.6	33.0 ± 0.3	21.9 ± 0.2	16.8 ± 0.1	$\textbf{13.4} \pm \textbf{0.1}$
50%	43.5 ± 0.5	21.9 ± 0.2	15.2 ± 0.1	11.47 ± 0.10	9.08 ± 0.08
30%	29.0 ± 0.4	14.7 ± 0.2	9.7 ± 0.1	7.44 ± 0.07	5.94 ± 0.06

E [GeV]	1	2	3	4	5
100%	38.7 ± 0.2	19.5 ± 0.1	13.11 ± 0.07	9.85 ± 0.05	7.90 ± 0.04
70%	28.5 ± 0.2	14.28 ± 0.10	9.56 ± 0.06	7.16 ± 0.05	5.76 ± 0.04
50%	22.8 ± 0.2	11.55 ± 0.09	7.57 ± 0.06	5.65 ± 0.04	4.60 ± 0.03
29%	18.8 ± 0.2	9.35 ± 0.09	6.30 ± 0.06	4.66 ± 0.05	3.75 ± 0.04

ı	E [GeV]	1	2	3	4	5
ı	100%	86.9 ± 0.6	45.3 ± 0.3	30.3 ± 0.2	22.8 ± 0.1	18.2 ± 0.1
ı	70%	62.5 ± 0.6	32.9 ± 0.3	21.7 ± 0.2	16.7 ± 0.1	13.3 ± 0.1
ı	50%	43.3 ± 0.5	21.9 ± 0.2	15.3 ± 0.1	11.07 ± 0.09	8.91 ± 0.07
ı	30%	28.9 ± 0.4	14.5 ± 0.2	9.54 ± 0.10	7.29 ± 0.07	5.85 ± 0.07

Three windows thicknesses for the geometry 1

Geometry 1

Module windows: • no foils

- 50 μm copper foils
- 150 μm copper foils

Residual plots: three thicknesses

Residual plots: three thicknesses

E [GeV]	1	2	3	4	5
100%	24.4 ± 0.1	12.32 ± 0.07	8.19 ± 0.04	6.25 ± 0.03	5.08 ± 0.02
70%	18.4 ± 0.1	9.30 ± 0.06	6.17 ± 0.04	4.83 ± 0.03	3.94 ± 0.03
50%	15.3 ± 0.1	7.82 ± 0.06	5.38 ± 0.04	4.17 ± 0.03	3.48 ± 0.03
29%	13.2 ± 0.1	6.77 ± 0.07	4.67 ± 0.05	3.73 ± 0.04	3.20 ± 0.03

E [GeV]	1	2	3	4	5
100%	58.9 ± 0.4	30.2 ± 0.2	20.2 ± 0.1	15.38 ± 0.08	12.24 ± 0.06
70%	43.1 ± 0.3	22.1 ± 0.1	$\textbf{14.75} \pm \textbf{0.09}$	11.23 ± 0.07	9.04 ± 0.06
50%	33.9 ± 0.3	17.5 ± 0.1	11.66 ± 0.09	8.69 ± 0.07	7.23 ± 0.05
30%	27.9 ± 0.3	14.0 ± 0.1	9.6 ± 0.1	7.21 ± 0.08	5.79 ± 0.06

E [GeV]	1	2	3	4	5
100%	38.8 ± 0.2	19.6 ± 0.1	13.17 ± 0.07	9.90 ± 0.05	7.96 ± 0.04
70%	28.6 ± 0.2	$\textbf{14.41} \pm \textbf{0.10}$	9.71 ± 0.06	7.38 ± 0.05	5.89 ± 0.04
50%	22.9 ± 0.2	11.69 ± 0.09	7.89 ± 0.06	5.90 ± 0.04	4.98 ± 0.04
30%	18.9 ± 0.2	9.48 ± 0.09	6.66 ± 0.06	5.02 ± 0.05	4.28 ± 0.04

E [GeV]	1	2	3	4	5
100%	24.3 ± 0.1	12.22 ± 0.06	8.14 ± 0.04	6.16 ± 0.03	4.94 ± 0.02
70%	18.3 ± 0.1	9.16 ± 0.06	5.99 ± 0.04	4.61 ± 0.03	3.58 ± 0.02
50%	15.2 ± 0.1	7.62 ± 0.06	4.84 ± 0.04	3.66 ± 0.03	2.93 ± 0.02
30%	13.0 ± 0.1	6.38 ± 0.06	4.23 ± 0.04	3.19 ± 0.03	2.55 ± 0.03

E [GeV]	1	2	3	4	5
100%	59.0 ± 0.4	30.2 ± 0.2	20.2 ± 0.1	15.37 ± 0.08	12.20 ± 0.06
70%	43.0 ± 0.3	22.1 ± 0.1	14.8 ± 0.1	11.01 ± 0.07	8.96 ± 0.06
50%	33.9 ± 0.3	17.5 ± 0.1	11.48 ± 0.09	8.61 ± 0.06	7.00 ± 0.06
30%	27.8 ± 0.3	13.9 ± 0.1	9.44 ± 0.10	6.93 ± 0.07	5.55 ± 0.06

E [GeV]	1	2	3	4	5
100%	38.7 ± 0.2	19.5 ± 0.1	13.11 ± 0.07	9.85 ± 0.05	7.90 ± 0.04
70%	28.5 ± 0.2	14.28 ± 0.10	9.56 ± 0.06	7.16 ± 0.05	5.76 ± 0.04
50%	22.8 ± 0.2	11.55 ± 0.09	7.57 ± 0.06	5.65 ± 0.04	4.60 ± 0.03
29%	18.8 ± 0.2	9.35 ± 0.09	6.30 ± 0.06	4.66 ± 0.05	3.75 ± 0.04

Pion beam simulation

- CERN 180 GeV pion beam was simulated
- Geometries 1 and 2 were tested

Pion beam: residual plots

Energy: 1 GeV, no. of events: 49931				
χ^2 cut [mm 2]		DUT		
	$\sigma R(y) \ [\mu m]$	0.215 ± 0.001		
100%	$\sigma R(z) \; [\mu m]$	0.214 ± 0.001		
0.0000	$\sigma R(y)$ [μ m]	0.1482 ± 0.0009		
67%	$\sigma R(z) \; [\mu m]$	0.1482 ± 0.0009		
0.0000	$\sigma R(y) \ [\mu m]$	0.1137 ± 0.0009		
44%	$\sigma R(z) [\mu m]$	0.1131 ± 0.0009		
0.0000	$\sigma R(y) [\mu m]$	0.0956 ± 0.0010		
27%	$\sigma R(z) [\mu m]$	0.0954 ± 0.0010		

Energy: 1 GeV, no. of events: 49841				
χ^2 cut [mm ²]		DUT		
	$\sigma R(y)$ [μ m]	0.499 ± 0.003		
100%	$\sigma R(z) [\mu m]$	0.491 ± 0.002		
0.0000	$\sigma R(y)$ [μ m]	0.355 ± 0.003		
69%	$\sigma R(z)$ [μ m]	0.358 ± 0.003		
0.0000	$\sigma R(y) [\mu m]$	0.238 ± 0.002		
49%	$\sigma R(z)$ [μ m]	0.248 ± 0.002		
0.0000	$\sigma R(y)$ [μ m]	0.133 ± 0.001		
27%	$\sigma R(z) [\mu {\sf m}]$	0.134 ± 0.001		

Energy: 1 GeV, no. of events: 49931			
χ^2 cut [mm ²]		DUT	
	$\sigma R(y)$ [μ m]	1.020 ± 0.006	
100%	$\sigma R(z)$ [μ m]	1.020 ± 0.006	
0.0000	$\sigma R(y)$ [μ m]	1.025 ± 0.007	
70%	$\sigma R(z)$ [μ m]	1.026 ± 0.007	
0.0000	$\sigma R(y)$ [μ m]	1.024 ± 0.009	
50%	$\sigma R(z)$ [μ m]	1.017 ± 0.008	
0.0000	$\sigma R(y)$ [μ m]	1.02 ± 0.01	
30%	$\sigma R(z)$ [μ m]	1.00 ± 0.01	

Energy: 1 GeV, no. of events: 49841			
χ^2 cut [mm ²]		DUT	
	$\sigma R(y)$ [μ m]	1.138 ± 0.007	
100%	$\sigma R(z) [\mu {\sf m}]$	1.126 ± 0.006	
0.0000	$\sigma R(y)$ [μ m]	1.127 ± 0.008	
70%	$\sigma R(z)$ [μ m]	1.118 ± 0.007	
0.0000	$\sigma R(y) [\mu m]$	1.132 ± 0.009	
50%	$\sigma R(z)$ [μ m]	1.111 ± 0.009	
0.0000	$\sigma R(y)$ [μ m]	1.12 ± 0.01	
30%	$\sigma R(z) [\mu m]$	1.10 ± 0.01	

The latest results

- Final beam test geometry: similar to the Geometry 1
- DUT is shifted to the front side
- The resolution of telescopes $\sim 5 \mu m$

Unscattered particle

Telescope resolution 5 µm

 χ^2 cut: width

100% : σ =2.53 \pm 0.02 μ m

70% : σ =2.53 \pm 0.02 μ m

50% : σ =2.49 \pm 0.02 μ m

30% : σ =2.56 \pm 0.02 μ m

Infinite energy extrapolation

- Plot σ^2 vs. 1/E²
- Angular distribution width σ due to a multiple scattering is proportional to 1/E

Infinite purity extrapolation

Attempt to exclude scattered tracks by Chi2 cut — infinite purity

Infinite purity and energy extrapolation

Even the most stringent cut cannot eliminate multiple scattering effects

Conclusions

- Software for a simulation and data analysis has been created. Now it's not a problem to run it all again with different parameters.
- There is no significant difference between the geometry 1 and 2 for unscattered particles.
- We can improve the resolution by excluding bad fits.
- Geometry 2 gives wider residual plots due to a multiple scattering. For 5 GeV electrons and $30\% \chi^2$ cut σ = **4.28** μ **m** for the Geometry 1 and σ = **5.94** μ **m** for the Geometry 2.

Conclusions

- For 5 GeV electrons and 30% χ^2 cut there is approximately 1 μ m difference between simulations with no module windows and 50 μ m copper windows.
- CERN 180 GeV pion beam has a significantly lower multiple scattering. The main contribution to its residual plot width come from the telescopes intrinsic resolution.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.