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Foreword: Total Ionizing Dose (TID)

Ionization in SiO2
In LHC: (charged hadrons, 

electrons, gammas, neutrons)

Creation of electron-hole pairs

Buildup of charge/defects

Device degradation
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Foreword: TID in CMOS devices

Trapped holes Vt shift, noise, leakage
fast formation, annealing

Interface states Vt shift, mobility, transcond.
Slow formation, no anneal. below 400oC

F.B.McLean et al., 
HDL-TR-2129 
internal report, 1987
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Outline

History of HBD in 250nm CMOS
Motivation for moving to 130nm
TID results for 3 different Foundries
SEE results
Conclusion
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The context: LHC needs

Large quantities of Rad-Hard ASICs (>100K 
circuits for some projects)
Radiation hardness between about 100Krad 
up to >10Mrad – levels well superior to typical 
Space applications
Low power to relax cooling requirements
Cheap, or at least not too expensive…
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The context: available Rad-Hard processes

At the beginning of the 90s, a few Rad-Hard processes were 
available
Several HEP groups explored deeply the possibility to use them 
for mixed-signal ASIC design
In almost all cases, this effort was unsuccessful:

Yield too low
Unreliable radiation performance for large quantities
Cost too high
Processes were discontinued or Foundry closed
Analog performance not very good
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Looking for alternatives

In 1997, R&D program “RD49-radtol” started with 
main objective the evaluation of alternatives based 
on the use of commercial CMOS technologies
Large collaboration
Study of:

radiation tolerance of technologies in the 0.7-0.25μm 
nodes
layout techniques to improve radiation tolerance
SEE sensitivity (SEL, SEU, SEGR)
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Times were mature …

Around mid-90s commercial CMOS technologies were integrating 
sufficiently thin gate oxides (about 5nm) …
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… but not all oxides are thin

Bird’s 
beak

Field 
oxide

Parasitic 
MOS

Trapped 
positive 
charge
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channel

Source
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IC level leakage
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Radiation-tolerant layout (ELT)
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Effectiveness of ELTs
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Advantages of this approach

Relies on physics (thickness of gate oxide): 
not process-dependent
Allows for using state-of-the-art technologies:

Low power
High performance
High throughput, high yield, short turnaround 
times
Low cost
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Difficulties for this approach

Modeling of ELT (size W/L?)
Loss of density
Yield and reliability??? 
Lack of commercial library for digital design
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Lack of commercial library (1)

Radiation tolerant 
design :

Use of enclosed 
NMOS transistors
Use of guard rings to 
isolate all n+

diffusions at different 
potentials (including 
n-wells)

NAND3 
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Lack of commercial library (2)

List of 
Library 
Standard 
Cells
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Lack of commercial library (3)

Development of a “Design Kit” for CADENCE DFII 
version 97a
Supported Design Flows:

Analog
Analog simulations (HSPICE).
Device extraction.
Physical Design Verification (DIVA, DRACULA).

Digital 
Logic Synthesis (SYNOPSYS).
Digital Simulations (VERILOG).
Place & Route (SILICON ENSEMBLE).

Mixed Signal 
Simulations (HSPICE/VERILOG).
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HEP foundry service

CERN selected a single supplier for foundry service 
(ASICs), and organized itself a service for High 
Energy Physics (HEP) Institutes
All HEP institutes can have access to this service
CERN acts as contact point for the service (technical, 
administrative, legal aspects)
Organization of Multi Project Wafer (MPW) runs, 
“dedicated” engineering runs and production, mainly 
related to ASIC need for the LHC
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MPW service

MPWs organized each year
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HEP Foundry Service

MPW service 
organized for 
more than 100 
different ASICs
More than 20 
different 
designs in 
production 
(some are 
multi-ASIC)
More than 2000 
wafers (8-inch) 
produced!

Production summary
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Outline

History of HBD in 250nm CMOS
Motivation for moving to 130nm
TID results for 3 different Foundries
SEE results
Conclusion
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Motivation to move to 130nm

LHC upgrades & SLHC will require higher-
performance ICs, tolerant to larger TID levels
250nm is already an old process and will not 
stay around much longer
More-modern CMOS processes have the 
potential of higher TID tolerance and much 
better performance
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Motivation to move to 130nm

1965: Number of Integrated Circuit components will double every year
G. E. Moore, “Cramming More Components onto Integrated Circuits”, Electronics, vol. 38, no. 8, 1965. 

1975: Number of Integrated Circuit components will double every 18 months
G. E. Moore, “Progress in Digital Integrated Electronics”, Technical Digest of the IEEE IEDM 1975. 

The definition of “Moore’s Law” has come to refer to almost anything related to the semiconductor 
industry that when plotted on semi-log paper approximates a straight line. I don’t want to do anything 
to restrict this definition. - G. E. Moore, 8/7/1996
P. K. Bondyopadhyay, “Moore’s Law Governs the Silicon Revolution”, Proc. of the IEEE, vol. 86, no. 1, Jan. 1998, pp. 78-81. 

1996:



2nd SiLC meeting
Paris, 2-3 February 2006

F.Faccio 24

Outline

History of HBD in 250nm CMOS
Motivation for moving to 130nm
TID results for 3 different Foundries
SEE results
Conclusion
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Test structures and measurement setup

3 commercial 130nm CMOS 
processes: foundries A,B 
and C
Some are PMDs from 
foundry, some custom-
designed test ICs
NMOS and PMOS 
transistors, core and I/O 
devices (different oxide 
thickness), FOXFETs
Testing done at probe 
station – no bonding 
required
Irradiation with X-rays at 
CERN up to 100-200Mrad, 
under worst case static bias
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Core NMOS transistors, enclosed layout (ELT)

The radiation hardness of the gate oxide is such that 
practically no effect is observed – verified for 2 
foundries (A up to 140Mrad, B up to 30Mrad)
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Core NMOS transistors, linear layout (1)

Wide transistors (W > 1μm):
Results different with 
Foundry
When the transistor is off or 
in the weak inversion regime:

Leakage current appears 
(for all transistor sizes)
Weak inversion curve is 
distorted

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

-0.5 0.0 0.5 1.0 1.5 2.0

Vg (V)

Id
 (A

) Pre-rad

3 Mrd

31 Mrd

Foundry B, 10/0.13

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

-0.5 0.0 0.5 1.0 1.5 2.0
Vg (V)

Id
 (A

)

Pre-rad
3Mrad
136Mrad
2d HT ann

Foundry A, 2/0.12

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

-0.5 0.0 0.5 1.0 1.5 2.0

Vg (V)

Id
 (A

)

pre-rad
1.00E+06
2.60E+07
6.30E+07
1.00E+08
2.24E+08

Foundry C, 10/0.12



2nd SiLC meeting
Paris, 2-3 February 2006

F.Faccio 28

Core NMOS transistors, linear layout (2)
Narrow transistors (W < 0.8μm):

Results different with 
Foundry
An apparent Vth shift 
(decrease) for narrow 
channel transistors
The narrower the transistor, 
the larger the Vth shift 
(RINCE)
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Core NMOS transistors, linear layout (3)

Foundry C
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Core NMOS transistors, linear layout (4)
Effect on the threshold voltage

Peak in Vth shift at a TID of 1-
5Mrad (A and C)
The narrower the transistor, the 
larger the Vth shift (RINCE)
Peaking dependent on dose 
rate and temperature, difficult to 
estimate in real environment

-0.140

-0.120

-0.100

-0.080

-0.060

-0.040

-0.020

0.000

1.E+05 1.E+06 1.E+07 1.E+08 1.E+09
TID (rd)

8
Vt

h 
(V

)
N_10_10
N_10_012
N_088_012
N_053_012
N_028_012
N_016_012

Foundry C

-0.160

-0.140

-0.120

-0.100

-0.080

-0.060

-0.040

-0.020

0.000

0.020

1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

TID (rad)

V
th

 (V
)

016_012
032_012
048_012
08_012
2_012
10_1
10_10
ELT

annealing

Foundry A

-0.140

-0.120

-0.100

-0.080

-0.060

-0.040

-0.020

0.000

1.E+05 1.E+06 1.E+07 1.E+08 1.E+09
TID (rd)

⎝
Vt

h 
(V

)

N_10_013
N_04_013
N_024_013
N_018_013
N_014_013

Foundry B



2nd SiLC meeting
Paris, 2-3 February 2006

F.Faccio 31

Radiation-induced edge effects - NMOS
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Core PMOS transistors, linear layout (1)
No change in the weak 
inversion regime, no leakage
An apparent Vth shift 
(decrease) for narrow channel 
transistors

The narrower the 
transistor, the larger the 
Vth shift
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Core PMOS transistors, linear layout (2)

There is no peak
here, but a continuous
shift of Vth
The effect is more 
pronounced for 
narrow transistors
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Radiation-induced edge effects - PMOS
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I/O NMOS transistors, linear layout

Large effect for all 
sizes, but more 
important for narrow 
channel transistors
Results different with 
Foundry, but for all 
HBD techniques are 
required already for 
TID levels of the 
order of 50-100krad
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I/O PMOS transistors, linear layout (1)

Large effect on Vth
for all sizes, but more 
important for narrow 
channel transistors
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FOXFETs (isolation test)

FoxFETs are “Field 
Oxide Transistors”
Good to characterize 
isolation properties with 
TID
Source-Drain could be 
either Nwells or n+ 
diffusions
Structures available in 
only 1 technology (1 
only Foundry)
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FOXFETs

Also in this case, a « peak » can be distinguished
(isolation oxide has similar properties to lateral oxide)
Not a problem for digital (all wells at Vdd, low level of
inter-transistor leakage), but care must be used for 
full custom to avoid large effects
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Outline

History of HBD in 250nm CMOS
Motivation for moving to 130nm
TID results for 3 different Foundries
SEE results
Conclusion
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SEE results: the SRAM circuit

16kbit SRAM test circuit designed using the 
SRAM generator from a commercial library 
provider – not dedicated rad-tolerant design!
Test performed with Heavy Ions at the 
Legnaro National Laboratories accelerator in 
June 2005
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Heavy Ion irradiation results

Test at Vdd=1.5 and 
1.25 V, results very 
similar
Sensitivity to very low 
LET values (threshold 
below 1.6 MeV/cm2mg)
Comparison with 
0.25μm memory (rad-tol
design!!):

Cross-section 15-30 
times larger in LHC 
environment
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Challenges for 130nm
Technology more expensive than ¼ micron:

Strong push for first working silicon
Strong push for common solutions to similar problems

Technology more complex than ¼ micron:
Reduced Vdd, difficult for analog
Physical effects can not be ignored: proximity effects, filling 
requirements, “cheesing”, …
As a consequence, design rules are considerably more 
complex (impressive growth of the design manual)
Larger number of tools is needed

Competence in radiation effects are also required
If non-enclosed transistors are used
To protect circuits from SEEs

All competences in technology, design techniques and tools 
necessary for a successful project are more difficult to gather in 
a group of small size
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Conclusion

HBD in quarter micron has made LHC electronics 
possible/affordable: large scale application of HBD is 
a reality!
Natural radiation tolerance of 130nm better than for 
the quarter micron technology (not for I/O 
transistors), but Mrad-level still requires HBD for 
reliable tolerance
Large effort required to develop library, acquire tools, 
master the technology:

Working with 130nm is MUCH more complex and 
expensive; pressure to get quickly to working silicon

CERN is preparing a frame contract with 1 selected 
Foundry, to develop library/design kit/design flow 
serving the whole HEP community
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