Radiation tolerance of commercial 130nm technologies for High Energy Physics Experiments

> Federico Faccio CERN/PH-MIC

Foreword: Total Ionizing Dose (TID)

Ionization in SiO₂ In LHC: (charged hadrons, electrons, gammas, neutrons) **Creation of electron-hole pairs Buildup of charge/defects Device degradation**

Foreword: TID in CMOS devices

Slow formation, no anneal. below 400°C

2nd SiLC meeting Paris, 2-3 February 2006

Outline

- History of HBD in 250nm CMOS
- Motivation for moving to 130nm
- TID results for 3 different Foundries
- SEE results
- Conclusion

The context: LHC needs

- Large quantities of Rad-Hard ASICs (>100K circuits for some projects)
- Radiation hardness between about 100Krad up to >10Mrad – levels well superior to typical Space applications
- Low power to relax cooling requirements
- Cheap, or at least not too expensive...

The context: available Rad-Hard processes

- At the beginning of the 90s, a few Rad-Hard processes were available
- Several HEP groups explored deeply the possibility to use them for mixed-signal ASIC design
- In almost all cases, this effort was unsuccessful:
 - Yield too low
 - Unreliable radiation performance for large quantities
 - Cost too high
 - Processes were discontinued or Foundry closed
 - Analog performance not very good

Looking for alternatives

- In 1997, R&D program "RD49-radtol" started with main objective the evaluation of alternatives based on the use of commercial CMOS technologies
- Large collaboration
- Study of:
 - radiation tolerance of technologies in the 0.7-0.25µm nodes
 - Iayout techniques to improve radiation tolerance
 - SEE sensitivity (SEL, SEU, SEGR)

Times were mature ...

Around mid-90s commercial CMOS technologies were integrating sufficiently thin gate oxides (about 5nm) ...

2nd SiLC meeting Paris, 2-3 February 2006 F.Faccio

... but not all oxides are thin

2nd SiLC meeting Paris, 2-3 February 2006

IC level leakage

Radiation-tolerant layout (ELT)

Effectiveness of ELTs

Advantages of this approach

Relies on physics (thickness of gate oxide): not process-dependent

- Allows for using state-of-the-art technologies:
 - Low power
 - High performance
 - High throughput, high yield, short turnaround times
 - Low cost

Difficulties for this approach

- Modeling of ELT (size W/L?)
- Loss of density
- Yield and reliability???
- Lack of commercial library for digital design

Lack of commercial library (1)

Radiation tolerant design :

Use of enclosed NMOS transistors Use of guard rings to isolate all n⁺ diffusions at different potentials (including n-wells)

Lack of commercial library (2)

CERNLIB Digital Standard Cells									
	Cell Name	Trans.	Size	Area		Cell Name	Trans.	Size	Area
		count	(µm)	(µm²)			count	(µm)	(µm²)
Core Logic			16x		I/O Logic			458 x	
Boolean					Output Pads				
Inverter 1X Drive	E_Inv1	2	3	48	8mA Drive Standard	OB8mA	16	115	51865
Inverter 2X Drive	E_Inv2	3	5	80	16mA Drive Standard	OB16mA	26	115	51865
Inverter 4X Drive	E_Inv4	6	9	144	20mA Drive Standard	OB20mA	34	115	51865
Inverter 8X Drive	E_Inv8	10	17	272	8mA Drive with Slew Rate control	OBSR8mA	14	115	51865
2 Input NAND	E_Nand2	4	7	112	16mA Drive with Slew Rate control	OBSR16mA	30	115	51865
3 Input NAND	E_Nand3	6	12	192	20mA Drive with Slew Rate control	OBSR20mA	38	115	51865
4 Input NAND	E_Nand4	8	14	224					
2 Input NOR	E_Nor2	4	5	80	Input Pads				
3 Input NOR	E_Nor3	6	11	176	CMOS Inverter Input	IB1	6	115	51865
4 Input NOR	E_Nor4	8	21	336	Simple PAD	INPAD	0	115	51865
2 Input XNOR	E_Xnor2	12	18	288					
					LVDS I/O Pads				
Complex Gates					LVDS TX	LVDStx	33	235	105985
2-Wide 2-Input AND-OR	E_A022	10	16	256	LVDS RX	LVDSrx	18	235	105985
2-Wide 2-Input AND-OR-INVERT	E_A0I22	8	13	208					
2-Wide 2-Input OR-AND-INVERT	E_OAI22	8	12	192	I ² C interface I/O Pads				
	_				20mA Open Drain Output	OD20mA	9	115	51865
Multiplexers					Bidirectional with 20mA Open Drain	IOD20mA	17	115	51865
2-Input MUX	E Mux2	12	18	288					
4-Input MUX	E Mux4	28	40	640	Power Pads				
				0.0					
D					VDD fan navinhams 0, aans		-	115	E1005
Bumers				170	VDD for periphery & core		0	115	51865
Buffer X4 Drive	E_But4	8	11	1/6	VDD for periphery	VDD_CORE	U	115	51865
Buffer X8 Drive	E_But8	16	26	416	VDD for core	VUU_PERI		115	51865
Cimela Calla					VSS for periphery & core	V88 0005		115	51865
Simple Cells				40	VSS for periphery	VSS_CORE	U	115	51865
Logic U		2	3	48	VSS for core	VSS_PERI		115	51865
Logic 1	LUGICI	2	3	48	Corner for I/O periphery	CURNER	U	115	51865
0 ddoro					Guard ring cells				
Auuers		10	27	400	Guard-Inig cella				
1-bit Half Adder		18	21	432	Enders Caller	O A DI		445	54005
I-bit Full Adder	E_FADI	- 34	45	720	Endcap Cell Left			115	51005
Elin Elono					Endcap Cell Reit			115	51005
								110	51005
Static D FLIP-FLOP		24	33	528					
Static D FLIP-FLOP with Reset		20	41	000					
Static D FLIP-FLOP with Set	IE_0Π_S	28	41	250					
Static D FLIP-FLOP with Set & Ri	е <u>с_</u> ап_ак	32	47	752		_			
Dupomia TODO D ELID ELOD		40	10	944					
			19	304					
Latches									
D-Latch	E_LD	18	25	400					
D-Latch with Reset	E_LDR	21	29	464					

List of
Library
Standard
Cells

Paris, 2-3 February 2006

Lack of commercial library (3)

- Development of a "Design Kit" for CADENCE DFII version 97a
- Supported Design Flows:
 - Analog
 - Analog simulations (HSPICE).
 - Device extraction.
 - Physical Design Verification (DIVA, DRACULA).
 - Digital
 - Logic Synthesis (SYNOPSYS).
 - Digital Simulations (VERILOG).
 - Place & Route (SILICON ENSEMBLE).
 - Mixed Signal
 - Simulations (HSPICE/VERILOG).

HEP foundry service

- CERN selected a single supplier for foundry service (ASICs), and organized itself a service for High Energy Physics (HEP) Institutes
- All HEP institutes can have access to this service
- CERN acts as contact point for the service (technical, administrative, legal aspects)
- Organization of Multi Project Wafer (MPW) runs, "dedicated" engineering runs and production, mainly related to ASIC need for the LHC

Total number of chips integrated > 200 Institutes involved: > 20

2nd SiLC meeting Paris, 2-3 February 2006 F.Faccio

HEP Foundry Service

- MPW service organized for more than 100 different ASICs
- More than 20 different designs in production (some are multi-ASIC)
- More than 2000 wafers (8-inch) produced!

Production summary

Outline

- History of HBD in 250nm CMOS
- Motivation for moving to 130nm
- TID results for 3 different Foundries
- SEE results
- Conclusion

- LHC upgrades & SLHC will require higherperformance ICs, tolerant to larger TID levels
- 250nm is already an old process and will not stay around much longer
- More-modern CMOS processes have the potential of higher TID tolerance and much better performance

Motivation to move to 130nm

- 1965: Number of Integrated Circuit components will double every year
 - G. E. Moore, "Cramming More Components onto Integrated Circuits", *Electronics*, vol. 38, no. 8, 1965.
- 1975: Number of Integrated Circuit components will double every 18 months G. E. Moore, "Progress in Digital Integrated Electronics", *Technical Digest of the IEEE IEDM 1975.*

- 1996: The definition of "Moore's Law" has come to refer to almost anything related to the semiconductor industry that when plotted on semi-log paper approximates a straight line. I don't want to do anything to restrict this definition. G. E. Moore, 8/7/1996
 - P. K. Bondyopadhyay, "Moore's Law Governs the Silicon Revolution", Proc. of the IEEE, vol. 86, no. 1, Jan. 1998, pp. 78-81.

Outline

- History of HBD in 250nm CMOS
- Motivation for moving to 130nm
- TID results for 3 different Foundries
- SEE results
- Conclusion

Test structures and measurement setup

- 3 commercial 130nm CMOS processes: foundries A,B and C
- Some are PMDs from foundry, some customdesigned test ICs
- NMOS and PMOS transistors, core and I/O devices (different oxide thickness), FOXFETs
- Testing done at probe station – no bonding required
- Irradiation with X-rays at CERN up to 100-200Mrad, under worst case static bias

Core NMOS transistors, linear layout (1)

- Wide transistors (W > 1μ m):
 - Results different with Foundry
 - When the transistor is off or in the weak inversion regime:
 - Leakage current appears (for all transistor sizes)
 - Weak inversion curve is distorted

2nd SiLC meeting Paris, 2-3 February 2006 F.Faccio

Core NMOS transistors, linear layout (2)

- Narrow transistors (W < 0.8μm):</p>
 - Results different with Foundry
 - An apparent Vth shift (decrease) for narrow channel transistors
 - The narrower the transistor, the larger the Vth shift (RINCE)

2nd SiLC meeting Paris, 2-3 February 2006

Core NMOS transistors, linear layout (3)

2nd SiLC meeting Paris, 2-3 February 2006

Core NMOS transistors, linear layout (4)

2nd SiLC meeting Paris, 2-3 February 2006 1.E+09

Radiation-induced edge effects - NMOS

Paris, 2-3 February 2006

Core PMOS transistors, linear layout (1)

- No change in the weak inversion regime, no leakage
- An apparent Vth shift (decrease) for narrow channel transistors
 - The narrower the transistor, the larger the Vth shift

2nd SiLC meeting Paris, 2-3 February 2006

Core PMOS transistors, linear layout (2)

- There is no peak here, but a continuous shift of Vth
- The effect is more pronounced for narrow transistors

2nd SiLC meeting Paris, 2-3 February 2006 F.Faccio

Radiation-induced edge effects - PMOS

I/O NMOS transistors, linear layout

- Large effect for all sizes, but more important for narrow channel transistors
- Results different with Foundry, but for all HBD techniques are required already for TID levels of the order of 50-100krad

I/O PMOS transistors, linear layout (1)

Large effect on Vth for all sizes, but more important for narrow channel transistors

FOXFETs (isolation test)

- FoxFETs are "Field Oxide Transistors"
- Good to characterize isolation properties with TID
- Source-Drain could be either Nwells or n+ diffusions
- Structures available in only 1 technology (1 only Foundry)

FOXFETs

- Also in this case, a « peak » can be distinguished (isolation oxide has similar properties to lateral oxide)
- Not a problem for digital (all wells at Vdd, low level of inter-transistor leakage), but care must be used for full custom to avoid large effects

Foundry A

Outline

- History of HBD in 250nm CMOS
- Motivation for moving to 130nm
- TID results for 3 different Foundries
- SEE results
- Conclusion

SEE results: the SRAM circuit

- 16kbit SRAM test circuit designed using the SRAM generator from a commercial library provider – not dedicated rad-tolerant design!
- Test performed with Heavy lons at the Legnaro National Laboratories accelerator in June 2005

Heavy Ion irradiation results

- Test at Vdd=1.5 and 1.25 V, results very similar
- Sensitivity to very low LET values (threshold below 1.6 MeV/cm²mg)
- Comparison with 0.25µm memory (rad-tol design!!):
 - Cross-section 15-30 times larger in LHC environment

Challenges for 130nm

- Technology more expensive than ¼ micron:
 - Strong push for first working silicon
 - Strong push for common solutions to similar problems
- Technology more complex than ¼ micron:
 - Reduced Vdd, difficult for analog
 - Physical effects can not be ignored: proximity effects, filling requirements, "cheesing", …
 - As a consequence, design rules are considerably more complex (impressive growth of the design manual)
 - Larger number of tools is needed
- Competence in radiation effects are also required
 - If non-enclosed transistors are used
 - To protect circuits from SEEs
- All competences in technology, design techniques and tools necessary for a successful project are more difficult to gather in a group of small size

Conclusion

- HBD in quarter micron has made LHC electronics possible/affordable: large scale application of HBD is a reality!
- Natural radiation tolerance of 130nm better than for the quarter micron technology (not for I/O transistors), but Mrad-level still requires HBD for reliable tolerance
- Large effort required to develop library, acquire tools, master the technology:
 - Working with 130nm is MUCH more complex and expensive; pressure to get quickly to working silicon
- CERN is preparing a frame contract with 1 selected Foundry, to develop library/design kit/design flow serving the whole HEP community